
Chris Daly

General Dynamics C4 Systems

Chris.daly@gdc4s.com

Assertion Framework for BYOD

Overview

 BYOD Problems, Requirements, and Scenarios

 What is an assertion?

 Why trust assertions for BYOD?

 Keys to understanding trust assertions

 BYOD trust assertion views covered

 Life Cycle

 Platform

 Transaction

 Inter-Context

 BYOD Scenarios – Revisited

Problems with BYOD

 Multiple personalities or entities on a single device can create security

issues

 In general, many security problems are related to improper

assumptions or poor management of trust relationships between

interacting components or entities
 Examples of problems: Social engineering/spear phishing, identity spoofing, domain hijacking, man-in-

the-middle attacks, cross-site scripting

 BYOD security should focus on the establishment and maintenance of trust assertions that manifest the

operating state and reputation properties of entities involved in interactions

 BYOD interactions occur at many levels and cut across device and

enterprise boundaries
 “Trust” interactions involve different components of a device working together including information

owners, processes, applications, data, and hardware elements

 Transitive or federated trust situations create significant security exposures if trust is not established or

verified at each node in the chain

 Trust of an entity can be evaluated when you actually know its state, so the entities being trusted must

be measurable in a security and operations context.

Requirements for BYOD

 From a proactive security perspective, measurable translates to:

 Ensuring an optimally secure state for the device [or container] is identified for

the usage of an asset across the life cycle of the asset

 The current security state of the device [or container] can be determined and

reported in a trustworthy way

 The security status of a device {or container] is linked to the business processes,

policies, and usage of that asset

 A “proactive” operations approach requires that critical assets are

instrumented to produce security assertions of their security state,

that these assertions are reported on a continuous basis, and

monitored in relation to critical mission activities and threats that are

germane

 Assertions should identify: changes that cause the device [or

container] to be out of compliance (good); and changes or activities

that indicate a breach or compromise (better)

BYOD Notional Scenarios
BYOD: Mobile devices that provide policy-managed, verifiable, and isolated contexts in which to process and

store data and provide confidence to information owners in the proper protection of their data.

Transport

Device Owner

Carrier

Device

Manufacturer
Platform HW and OS

Personal

Data and

Apps

Enterprise

Data and

Apps

mWallet

Data and

Apps

Trust

Facilities

Information Owners

Trust Assertions

Carrier

Data and

Apps

Enterprise

Cloud

Banking

Cloud
Internet

Transport

Device Owner

Carrier

Device

Manufacturer
Platform HW and OS

Personal

Identity

Enterprise

Identity

mWallet

Identity

Trust

Facilities

Platform

ID

Information Owners

Trust Assertions

Carrier

ID

What is a Trust Assertion?

 An assertion is a set of one or more attributes that represents the state
of an entity in a transaction, usually on-line, but could be between two
different information domains on the same device

 Mobile devices may use assertions to represent the state of firmware as
either verified or unverified, the state of an OS as either validated or
not, the state of file encryption as either on or off, the state of the
microphone as either on or off, etc.

 A Policy Enforcement Engine collects assertions from a mobile platform
[or a virtual container on a platform] and determines whether or not the
platform [or container] is in compliance with a particular policy.

 A “trust assertion” uses “trusted components” and reflects methods for
positively establishing relevant properties of an entity, a secure path for
communication, a secure space for processing, a secure method to
prevent observation or interference, and a secure API for interactions

Why Trust Assertions for BYOD

Game

Trojan
Phone

Home

Jailbreak

Rootkit

Assertions provide a way for the Information Owner to detect if the Device Owner’s activities have

unknowingly altered the state of the device in such a way so as to put the Information Owner’s data

[context] at risk.

A Root of Trust (RoT) provides an anchor on which to base integrity assertions about the mobile device’s

configuration, health, or operating status that can be verified by the Information Owner through a remote

or local verifier.

Standards (based on NIST SP 800-157) to format and perform the integrity measurement assertions

enable scalable management of uniform policies possible even on devices not directly controlled by the

Information Owner.

Forged

SOH

Examples of Trust Assertions

 Are the device and firmware you are using been modified? I can attest that I booted securely
and without unauthorized mods

 Who are you and are you trusted? I can assert unforgeable proof of my identity

 Is the code or application you are using trusted? I can assert proof that the software I am using
is trusted based on this evaluation certificate

 Has the information you are sending or receiving been tampered with and is it
authoritative? I assert that the information I sent you came from me and was not modified in
transit.

 Are you authorized to perform this process? I can assert my authority based on this certificate
of authority which is cryptographically based.

 Do you need to perform this process? I can assert a requirement to perform this process based
on this chain of authority and certified mission priority (e.g., orders).

 Is the infrastructure trusted that was used to support your request? I can assert that the
infrastructure is operating according to design based on this certification.

 Is the organization you belong to trusted? I can assert my organization is trusted to support
this effort based on reputation and proven experience citations.

 Are you in a “context” that is trustworthy commensurate with the sensitivity of the
information and use of resources involved in the process (e.g., printer, browser)? I can
assert that the context in which I am operating is isolated from interfering or adversarial contexts,
and that it is certified to handle and protect the sensitivity of data to be processed based on this
certificate or cryptographically protected label.

Conditions for BYOD Assertions

 Immutable Root of Trust: The Root of Trust (RoT) possesses a certain level of

immutability so that the Information Owner can be confident that no matter what

state the mobile device is in, the RoT has not been affected.

 Transitive Trust Chain: Assertions start from RoTs and work their way up the stack

/ various contexts based on a transitive trust chain.

 Continuous [Device/Context] Monitoring: There needs to be a way to constantly

re-affirm that the device’s (and specific IO context) state has not been compromised

- the device must be able to make certain reliable non-repudiable assertions about

itself to the information owner.

 Policy Flexibility: In some scenarios, information owners may want explicit

assertions to be made about specific information contexts. Assertions may need to

be compounded to build new assertions. Gradations of assertions may be needed.

 On-Board and Remote Assertion Reporting: Devices should possess the ability to

make assertions both locally and remotely.

 Life Cycle Standards: The mobile device needs to be initially examined, configured,

provisioned and affirmed as trusted by Device Manufacturer and Information

Owner.

What is a Root of Trust

 A Root of Trust (RoT) is more than just a certificate; it is a computing element that executes a

set of unconditionally trusted functions in support of device integrity, isolation, and protected

storage.

 A RoT must always behave in an expected manner because RoT misbehavior cannot be

detected.

 Hardware roots of trust are preferred over software roots of trust due to smaller attack

surfaces and more reliable behavior.

 Roots of trust instantiated at the beginning of device power-up are immutable and are in a

good position to serve as anchors for chains of trust for measurement and verification.

 RoTs must be exposed to the device and operating system in order to establish a chain of trust

for user applications and to provide assertions.

 Mobile applications interacting with services offered by various information owners will

frequently utilize the capabilities provided by the RoTs to locally store cryptographic keys,

authentication credentials, and other sensitive data.

 Information owners will frequently rely on assertions based on RoTs.

Mobility Roots of Trust

 Root of Trust for Storage (RTS) - provides protected repository and protected interface to store and

manage keying material

 Root of Trust for Verification (RTV) - Works in conjunction with the RTM to verify and authenticate

the integrity of all software and create assertions based on the result. It checks the software measurements

against their reference values

 Root of Trust for Integrity (RTInt) - provides protected storage, integrity protection, and protected

interface to store and manage assertions

 Root of Trust for Identity (RTId) - provides a protected interface to manage identities and sign

assertions.

 Root-of-Trust-for-Reporting (RTR) - provides authenticity and non-repudiation services. The RTR is

used to authenticate the identity of the sender of data and the source of the data attested.

 Root-of-Trust-for-Measurement (RTM) - performs the measurement functionality. The RTM should

ensure that these integrity measurements are protected by an RTInt.

 Root-of-Trust-for-Update (RTU) - verifies the authenticity of signed updates, upon successful

verification, initiate the update process. May be used to protect the other roots of trust.

 Root-of-Trust-for-Enforcement (RTE) - a trusted entity that builds any of the RoT components that

are based on allocated resources. Examples of allocated resources include a trusted operating system or a

function implemented in a software application. If all RoT components are provided as dedicated

resources, the RTE is not required. Typically, the RTE is the trusted code that is stored in ROM and

executed on platform reset to begin secure boot.

Root of Trust Principles

 Roots of trust can be implemented as a combination of hardware and software to provide the

best balance of cost of hardware against the security provided. E.g. the mobile TPM provides

RTId, RTR; the GP TEE provides RTS and RTInt; while the BIOS provides RTM, RTV, and

RTU

 The security strength of trust roots is defined by properties like resilience to unauthorized

modifications, cryptographic strength, method of platform bindings, and evaluation level in

associated documents

 Modifications to a RoT must be either cryptographically authenticated from the RoT owner,

or verified through the use of a secure local update mechanism (e.g. physical presence)

 If the RoT is modifiable, it must have a uniquely and cryptographically identifiable owner

 If the RoT can modify other RoTs, it must be uniquely and cryptographically identifiable

 A RoT cannot be verified before its execution, therefore it must be trusted to work correctly.

Note: In the mobile world, the RTE is inherently trusted, and the other RoTs are verified

before execution (and do not boot if they are not verifiable)

HW Kernel
Boot-

loader
BIOS

Kernel

Drivers

Regula

r

Drivers

Other

SW

Transitive Trust

Trust Authority B

(e.g., Information Owner)

Trust Authority A (e.g., Device Manufacturer)

Transitive trust is a process whereby the RoTs establish the trustworthiness of an executable function, and trust in

that function is then used to establish the trustworthiness of the next function.

Transitive trust may be accomplished either by: (1) knowing that a function enforces a trust policy before it allows

a subsequent function to take control, or (2) using measurements of subsequent functions so that an independent

evaluation may establish the trust. The mTPM may support either of these methods.

Code is signed so that the identity of the authority for the code is known. In modern architectures, where

firmware and software components come from many different suppliers, it is often not feasible for platform

manufacturers to know the signers of all code that runs on a platform. Therefore, they may not remain the

authority on platform state for very long. The measurements recorded in the RTInt then determine the chain of

authority for the current system state.

Measurements

MRTM MLTM

Attestation Hierarchy

mTPM

Manufacturer

Device

Manufacturer

Attestation CA

Device /

Information

Owner

Endorsement

Certificate

Platform

Certificate

Attestation Key

Certificate

Information

Owner Context

Attested

Measurement

“quote”

RIM Authority
RIM Authority

Certificate

RIM Certificate Verification

Agent

Identifies the manufacturer and evaluated assurance level (EAL) of a moble TPM. This

certification vouches that the mTPM is genuine and complies with the mTPM specification.

Identifies the DM and vouches that the platform contains a Root-of-Trust-for-Measurement, a

genuine mTPM, plus a trusted path (binding) between the RTM, the RTR and the mTPM; and

with other RoTs not contained in the mTPM.

“Attestation CA” attests to an asymmetric key pair in a mTPM to vouch that that key is protected

by an unidentified but genuine mTPM, and has particular properties. The resulting credential is

the AK Certificate. An AK may be used only to sign a digest that the mTPM has created. If an AK

is known to be protected by a TPM (by virtue of previous attestation), it may be relied on to

accurately report on Protected Storage content, and not sign externally provided data that

appears to be valid and mTPM-produced but is not.

A trusted platform (MLTM or MRTM) vouches that that a key pair is protected by a genuine but

unidentified mTPM and has particular properties.

A trusted platform (MLTM or MRTM) attests to a measurement in order to vouch that a

particular software/firmware state exists in a platform. This attestation takes the form of a

signature over a measurement in a PCR using an attestation-key protected by the TPM.

A certificate used to validate the identity and authority of a RIM Authority,

A certificate containing a RIM value for a given target object. The Verification Agent validates and

uses the RIM-Cert to compare against the “quote” to check integrity and to produce assertions.

“mTPM Certify”

Certificates provide assurances that the trust roots have been implemented in a way that

renders them trustworthy

How Are Assertions Created?

 Verified components assert the state of peripherals, such as whether or not a microphone is

live, or a camera is on. Verified components assert their state by hashing a certificate along

with a fixed value representing the state of a peripheral or software element.

 When a device [or container] asserts its state with cryptographic primitives, it uses signing

keys. These signing keys represent the tangible identity of some entity, whether it is the device,

the device owner, the information owner, or an application on the device serving as a proxy

for one of them.

 As the device and verified components create assertions, they must also create policies that

spell out which information owners (as represented by their identities) have the right to share

them.

 As the device boots, it contains few information owners (maybe only one, that of the device owner). As assertions are

created they can be stored along with policies that control access to them.

 As new applications are provisioned and new information owner identities are created, the new applications may

request access to existing assertions to which the device owner can grant or deny.

 When the applications are executed, the information owner identities are activated along with

their assertion policies. If the running applications generate additional assertions on behalf of

the information owner, then the information owner controls the policies of those assertions.

 These assertions and policies are ephemeral in nature and should die when the application dies, and be recreated

when the application runs again.

• Policy Manager collects assertions and determines whether or not the platform is in

compliance with a particular policy, and whether requests to access assertions can be granted.

Policy Flexibility

 The Policy Manager provides information owners with the ability to express the

control they require over their information. The Policy Manager interacts with

all of the information owners and translates the desired requirements for

storing and sharing their information into the appropriate device and network

configurations and policy.

 The Policy Manager must be trusted to implement the information owner's

requirements correctly and to prevent one information owner's requirements

from adversely affecting another's. The Policy Manager will enforce the policy

with the strictest requirements. Where there is an irresolvable conflict the

Policy Manager will notify the device owner and enforce a default policy that

prevents unauthorized access to data until the conflict is resolved.

 In order to perform key functions, the Policy Manager must be able to query

the device's configuration state. For example, if device sensor events are part of

a policy to be enforced, the Policy Manager must have access to those outputs

in order to enforce the policy, independent of the application context.

Assertion Life Cycle

Establish

Identities

Establish

Policies

Generate

Assertions

Maintain

Assertions

Share

Assertions

Collect

Assertions

Process

Assertions

Mobile devices generate assertions during boot by

verifying the signatures of the boot components. It is

important that standards be used to support

interoperability of assertions throughout their lifecycle.

RTInt

RTV

Policy

Mgr

As the verified components create assertions,

they also create policies that spell out which

information owners have the right to share

them. As assertions are created they can be

stored along with policies that control access to

them.

A RTInt maintains assertions in a protected

repository. Alternatively, the device and its

applications may generate assertions and store

them outside the RTInt as long as a verifiable

chain of trust exists from the RTInt to the

external storage location. In both cases, the

assertions must be protected from unauthorized

writes.

RTInt

Ext

Store

Upon provisioning, a mobile device establishes

identities for the device and the device owner.

The owner should authorize the platform to

establish identities for each information

owner.

RTS
RTV

The device uses policy to control the

information owner’s access to assertions

about the device and to establish explicit

assertions.

Policy

Mgr

The device RoTs enforce the policies for the sharing

of assertions based on the policies provisioned at the

time the assertions were created as well as the

identity of the information owner requesting the

assertion.

RTId

Policy

Mgr RTInt

A requester will generate a request for assertions.

Software agents will collect and sign them with a

key associated with an identity of either the device

or an information owner. The requester will supply

a nonce to the agent to guarantee freshness of the

assertion signature.

RTS

RTInt

RTId

RTS

The requestor, performing a remote assessment of the mobile device, participates in the

protocols with the software agents on the device to ensure the confidentiality, integrity,

and freshness of the signature as well as authenticating itself to the device. Once the

requester receives the signed assertion it will use the public certificate associated with the

identity of the device or information owner used to sign the assertion to verify the signed

assertion.

Certs

Certs

Places Where Assertions Are Needed
 Assertions generally around 3 key device capabilities: Device integrity, Isolation, Protected

Storage

 To support typical device / container management objectives:

 Securing mobile credentials (e.g. unique device information owner IDs, Bluetooth & WLAN IDs, etc.) to establish

the authenticity of a device or information context on the device to store process, or access resources.

 Attested updates over the air (e.g., FOTA, patches, policies) or remote diagnostics & auditing

 Data backup and restore, remote lock and wipe, service enrollment / de-enrollment

 Device compliance status reporting & subsequent service decisions. Enterprises check software state and OS

policy compliance before allowing access to corporate network.

 Secure storage by information owner context to provide evidence to information owners that the confidentiality

and integrity of sensitive data on the device is protected while at rest, while in use, and upon revocation of access.

 Compromise or disruption in processes running in other execution environments on the platform will not cause

loss of integrity in the software processes used in the subject execution environment.

 To support typical device owner transactions:

 To provide assurance to the device owner that they will not lose control over the device or overextend privileges

to “guest” information owners. Overly broad enterprise policies can be detrimental to device owners - full device

wipe, remote lock, reset device configuration by an information owner other than device owner

 To provide confidence in transactional integrity properties to relying parties. A device may assert specific claims

about operating status in a way that information owners can confidently rely upon to make decisions about

interacting with the device, e.g., a secure PIN entry method was used for a mWallet transaction.

 To avoid data spills when using multi-context applications and peripherals (e.g., browser, GPS, Bluetooth, WiFi).

For example, when a browser residing in a Carrier domain connects to multiple information contexts (e.g.,

enterprise and banking).

 To support migration of credentials from one device to another

Platform Assertions

 Identities

 identity of the device

 identity of the Device Owner

 Identity of Information Owner

 System static images

 Boot firmware (hash)

 Kernel (hash)

 Drivers (hashes)

 Other key system files (hashes)

 CA trust list

 Digital signature of the kernel is valid

 Digital signature of the drivers are valid

 Digital signature of the key system files

are valid

 System capabilities

 Ability to arbitrate isolation

requirements (system features that

support isolation)

 I/O features

 Hardware (presence of peripherals)

 Current configuration state

 debug state of device

 Location

 Sealed storage

 Anti-malware protection active

 Firewall configuration

 Network state (WAN, WiFi, bluetooth,

NFC, etc)

Transaction Assertions

 Proof of possession of an authoritative token is used as the basis to

begin a trusted interaction – trusted credentials or attributes
 “Trusted credentials” must have integrity and strong identity assertion; starting (ideally) with some

authoritative, immutable, tamper-resistant source, e.g., smart card, mTPM

 Authoritative token / credentials are bound to respective device-user-

transaction
 Bindings should flow end-to-end in both directions

 Bindings provide basis for authentication, authorization, accountability

 Assertions are signed based on keys associated with the device/user/information owner identity.

 Non-repudiation of the transaction, protection against replay attack are types of assertions enabled.

 Trusted assertion reporting
 Need 2-way assertion flow

 Need to allow verification on the device or in the cloud

 The consumer device asserts the integrity of the information provided, the authenticity of the user

providing the information, and (optionally) the integrity and authenticity of the execution

environment that enabled the other assertions.

Inter-Context Assertions - When assertions must be

generated for access across different information owner

contexts
 When the assertions required straddle the boundary between Information Owner

context owners, it becomes critical to understand the limits of the isolation

mechanisms built into the device.

 Other Key Assertions:

 Sealed Storage - Execution of trusted processes and access to data is based on a known good

(measured) state of the overall platform or of the specific isolated execution environment that

manages the information owner context and related data. Access to trusted engines is sealed based on

mTPM state / measurements.

 Locked Storage - Upon power-up, Information Contexts and their associated data should originate in

a locked / encrypted state. Transition from the locked / encrypted state to the unlocked/decrypted

state occurs if the Information Owner provides the correct authentication, and the RTS / RTInt are

satisfied of the state conditions.

 Trusted Path – e.g., an application has exclusive access to path to radio and UI. Requires assertions

regarding the authenticity of components talking and being talked to; and the secrecy of data being

transmitted.

 Trusted API - There must be assertions regarding controlled interfaces between contexts

 Issues with Inter-Context Assertions

 SSO to different containers

 What if one container hibernates?

End-to-End Assertions

• A TNC-centric view of secure mobility: alternatively, a smart phones can attest

directly to a server via the public internet i.e. without going via TNC

End-to-End Assertions Using TNC

 Assessment Options
 Identity, health, and/or behavior
 Optional hardware-based assessment with mTPM
 Pre-admission, post-admission, or both

 Enforcement Options
 802.1X, firewalls, VPN gateways, DHCP, host software

 Clientless endpoints
 No NAC capabilities built in
 Printers, phones, robots, guest laptops

 Information sharing
 IF-MAP lets security devices share info on user identity, endpoint health, behavior, etc.
 Federated TNC supports federated environments

Issues with BYOD – Integrated or Co-Existing Trust

Engines

 Examples of trust engines

include Global Platform

TEE, hypervisor, SMM,

mTPM (MLTM /

MRTM), etc.

 How to allocate / realize

RoTs?

 How to evaluate

robustness /

compounding of

assertions, i.e., some

from TEE, some from

hypervisor, etc.?

 How to certify?

 How to ensure isolation

among trust components

within same TEE for any

shared resources, e.g.

RTS exclusiveness with

respect to the mTPM

component?

Notional Integration of GP TEE and mTPM

Device ROM

and storage

TEE

MTM instance

Main OS

bootloader

Measurements

Main OS

code/apps KEY

Protected by

SoC hardware

Protected by

TEE/crypto

Protected by

MTM/crypto

Normal

environment

Trusted

environment

1. TEE Supervisor application will create a new

guest VM without any associated resources.

2. Upon success, an in-kernel object representing

the new guest VM and its state is created.

3. The guest VM created during the preceding

step does not yet have any resources associated

with it.

4. It is the responsibility of the TEE supervisor

application to allocate resources for the guest

VM (e.g., mTPM). It is not mandatory to

allocate all resources used by the guest VM

before the first switch to non-secure world

(normal environment).

5. Any resource allocation is checked by the in-

kernel component of the TEE framework.

6. If multiple TEE supervisor applications and

multiple guest VMs are running concurrently,

the in-kernel resource manager takes care of

prohibiting any conflicting allocations.

7. Normal World RTM generates measurements

and assertions – stores in mTPM. Continues

process and loads Normal environment OS.

Issues with BYOD – Trusted APIs for Provisioning

TEE, mTPM, etc. Key Store

Platform Hardware

Battery HW RoT BB Processor Peripherals NFC Antenna Network Storage WiFi Antenna

Kernel

DM/Carrier

Engine

Consumer

Engine Enterprise VM

Trusted

Applications

Trusted Execution

Environment

Secure Boot Mgr

(CRTM)

Secure UI Mgr

Secure

Channel Mgr

Secure Storage

Mgr

Browser

App
App

App

User

Interface
Contact

Lists

App
App

vMTM
vMTM

vMTM

mWallet VM

TEE API TMS

mWallet app

Card

2 App

Card

1 App

Card

Selector

MA VA

MLTM

MDM

Agent

Policy

Mgr PIN

Entry

Provisioning Mgr Enterprise app

Aoo

Security

App

App

Contact

Lists

MDM

Agent

BYOD Implementation Scenario 1 – Basic Case

MRTM

MDM

Agent

Processor

Platform Hardware

Battery HW RoT Processor Peripherals NFC Antenna Network Storage WiFi Antenna

Hypervisor

Android JVM

Carrier Engine

Consumer

Engine

Device VM

Operating System Operating System

Trusted

Applications

Trusted Execution

Environment

Secure Boot Mgr

(CRTM)

Secure UI Mgr

Secure

Channel Mgr

Secure Storage

Mgr

TEE API

Browser

App
App

App User Interface

Contact

Lists

App
App

RTM

vMTM
vMTM

vMTM

Operating System

mWallet VM

RTM

mWallet app

Card

2 App

Card

1 App

Card

Selector

MA VA MA VA

MA VA

MLTM

MDM

Agent

MDM

Agent

MDM

Agent

Policy

Mgr PIN

Entry

Provisioning Mgr

BYOD Implementation

Scenario 2 – Integrated Trust Engines

MRTM

BB Processor

Platform Hardware

Battery HW RoT Processor Peripherals NFC Antenna Network Storage WiFi Antenna

Hypervisor

Operating System

mWallet VM Android JVM

Carrier Engine

Consumer

Engine

DeviceVM

Operating System Operating System

Trusted

Applications

Trusted Execution

Environment

Secure Boot Mgr

Secure UI Mgr

Secure

Channel (TP)

Mgr

Secure Storage

Mgr

TEE API

TMS

TMS

Browser

App
App

App User

Interface

mWallet app

Card

2

Card

1

Contact

Lists

App
App

mWallet

Policy

Mgr

TMS

Card

Selector

RTM

Policy Mgr

MDM

agent
MDM

agent

MDM

agent

PIN

Entry

Provisioning Mgr

BYOD Implementation Scenario 3 – Co-Existing Trust

Engines

vTPM vTPM vTPM

MLTM

MLTM

MRTM

TEE API TEE API

Policy Mgr

BB Processor

