Software Assurance (SwA)
Automation...

Robert A. Martin, MITRE
781-271-3001
ramartin@mitre.org

Application Security Wake-up Call

60 — Percent of Reported Air Force

CAT I/ 1l Intrusions
50 T that Targeted Applications — “Network-layer security mechanisms dominate
40 = current deployments but are proving inadequate in
= - the face of more frequent application-layer attacks.
18 / This condition requires that vendors and users alike
20 / increase their focus on application-oriented security
10 controls.“ - Mark Bouchard, META Group
2
2004 2005 2006 “T5 % of hacks occur at
the application level...”
Dec 2005
Gartner

wonal Focus

Network

T e
Needed Focus

© 2009 MITRE

Catastrophic Failures Can Be Due To
Software Weaknesses

... declare
vertical_veloc_sensor: float;
horizontal _veloc_sensor: float;
vertical veloc_bias: integer;
horizontal _veloc_bias: integer;

... begin

declare

pragma suppress(numeric_error,
horizontal _veloc_bias);

begin sensor_get(vertical _veloc_sensor);

sensor_get(horizontal veloc_sensor);

vertical_veloc_bias :=
integer(vertical_veloc_sensor);

horizontal_veloc_bias :=
integer(horizontal _veloc_sensor);

... exception when numeric_error =>
calculate_vertical _veloc();

when others => use _irs1();
end:;
end irs2;

A 64 floating point to 16
bit signed integer overflow
condition?

Poor exception handling?
A faulty design
assumption?

Incomplete Testing
process?

A Software Reuse Error?
Malicious Flaw Insertion?

© 2009 MITRE

Software Flaws
Can Have Major Mission Impacts
- Ariane 5 Flight 501 -

© 2009 MITRE

v Al g et - -
By AT AT -?:__ - e - e o e 2 atur

| L
o

Buffer Overflow
Exploit

Exploitable Software Weaknesses (a.k.a. Vulnerabilities)

Vulnerabilities can be the outcome of non-secure practices and/or
malicious intent of someone in the development/support lifecycle.

The exploitation potential of a vulnerability is independent of the
“intent” behind how it was introduced.

D S

Defects

XPLOITABLE SOFTWARE

Unintentional Intentional
Vulnerabilities Vulnerabilities

O
F
T
W
By
R

om<Orom

Intentional vulnerabilities are spyware & malicious logic deliberately imbedded (and

might not be considered defects but they can make use of the same weakness patterns
as unintentional mistakes)

Note: Chart is not to scale — notional representation -- for discussion

Software Vulnerabilities

. Serve as a primary point of entry that Attackers use to
gain access to systems and/or data

. EXpose business/mission systems to compromise

. Allow Attackers to circumvent security controls:
- Pose as other entities
- Execute commands as other users
- Conduct information gathering activities
- Contrary to specified access restrictions
- Access and Manipulate data
- Hide activities
- Conduct a denial of service
- Embed malicious logic for future exploitation

© 2009 MITRE

Publicly Known Vulnerabilities In
“Packaged Software” (CVE) Growth

40000

mUnique CVE Names

35000 A

30000 A

25000

20000

15000 A

10000

5000 A

0

58
Status =
(as of Oct 14, 2009)
« 38,839 unique CVE names ©2009 MITRE

Vulnerability Type Trends:
A Look at the CVE List (2001 - 2007)

25.00% 1
XSS

- buf

sqgl-inject
20.00% - '___,a//\ dot

-~ php-include
infoleak

15.00% - ——dos-malform

link

\ - format-string

10.00% - \.\ >X crypt

priv
perm
metachar

5.00% - +_-——"\ / int-overflow
‘ y*w/

| —

| | | ; -+ ({T: —
e | B\S

0.00%

2001 2002 2003 2004 2005 2006 2007 MITRE

Removing and Preventing the Vulnerabilities
Requires More Specific Definitions...CWESs

Failure to Sanitize Directives in a Web Page (aka 'Cross-site scripting' (XSS)) (79)
« Failure to Sanitize Script-Related HTML Tags in a Web Page (Basic XSS) (80)
* Failure to Sanitize Directives in an Error Message Web Page (81)
* Failure to Sanitize Script in Attributes of IMG Tags in a Web Page (82)
* Failure to Sanitize Script in Attributes in a Web Page (83)
* Failure to Resolve Encoded URI Schemes in a Web Page (84)

Doubled Character XSS Manipulations (85)
Invalid Characters in Identifiers (86)

XSS

Alternate XSS syntax (87)

—=— puf
Sq | .-inj ect Failure to Constrain Operations within the Bounds of an Allocated Memory Buffer (119)
« Unbounded Transfer (‘Classic Buffer Overflow’) (120)
d Ot » Write-what-where Condition (123)

» Boundary Beginning Violation ('Buffer Underwrite") (124)

- Out-of-bounds Read (125)
p h p In CI u d e » Wrap-around Error (128)

. Unchecked Array Indexing (129)
infoleak

Incorrect Calculation of Buffer Size (131)
Miscalculated Null Termination (132)
—— dos-malform
link
Path Traversal (22)

Return of Pointer Value Outside of Expected Range (466)
- i Relative Path Traversal (23)
fD rm at Strl n g « Path Traversal: ‘\..\filename' (29)

« Path Traversal: \dir\..\filename' (30)
CI“V pt e Path Traversal: 'dir\..\filename' (31)
. e Path Traversal: '..." (Triple Dot) (32)
DrW e Path Traversal: '...." (Multiple Dot) (33)
e Path Traversal: "..../I' (34)
DE rm e Path Traversal: '.../.../I' (35)
« Absolute Path Traversal (36)
m Eta ch alr » Path Traversal: /absolute/pathname/here’ (37)
» Path Traversal: \absolute\pathname\here’ (38)
H » Path Traversal: 'C:dirname’ (39
Iin t_ove rﬂ ow » Path Traversal: '\\UNC\share(\neime\' (Windows UNC Share) (40)

© 2009 MITRE

Current Community Contributing to the
Common Weakness Enumeration

Making
Security
Measurable”

R I R R A R RS I R S N T

AppSIC

Apple

Aspect Security

Booz Allen Hamilton Inc.
Cenzic

CERIAS/Purdue University
CERT/CC

Cigital

Codenomicon

Core Security

Coverity

DHS

Fortify

Gramma Tech
IPA/JPCERT

IBM

Interoperability Clearing House
JHU/APL

JMU

Kestrel Technology
KDM Analytics
Klocwork

McAfee

Microsoft

MIT Lincoln Labs
MITRE

To join send e-mail to cwe@mitre.org

I R S R S R R SR R S

North Carolina State University
NIST

NSA

OMG

Oracle

Ounce Labs

OSD

OWASP

Palamida

Parasoft

PolySpace Technologies
proServices Corporation
SANS Institute
Securitylnnovation
Security University
Semantic Designs
SofCheck

SPI Dynamics
Surelogic, Inc.
Symantec

UNISYS

VERACODE

Watchfire

WASC

Whitehat Security, Inc.

© 2009 MITRE

PLOVER
(CWE draft

oy o o

y
L o

At b & L Ll |

A

i
I

ey

i

i

BRI

I

CITTA T L A4 I TN I.. 1\ —

P
e
_—
==
-
)
)
_
e
_
=
SEE=
= ==
—

——

=

1)

.
TS

CWE
draft 5 g

+

I
I
i
j [T
R R fIREEE .%ﬂ? _
G F M ol et oo

| o0

..:-!

T

/
i

+

|

__+

N
[AN
o

i

o
il _

iy

MELDR

RS H

—

4
mnllléﬂlitlm my

ol

it

i

I

gé'fg;if g
cwe | =f
draft 7J|‘:

CWE

CWE

+

2005
300 nodes

2006
599 nodes

634 nodes

2008
673 nodes

Jul 2009
776NHOHEMTRE

2009 SANS/CWE Top 25 Programming Errors

(released 12 Jan 2009)

Some Participants:
Purdue

DHS

NSA

UC-Davis

KRvW Associates
Cigital

Symantec
McAfee

MITRE

Aspect Security
Secunia
Mandiant

Red Hat

Apple

Microsoft

Oracle

Fortify
Grammatech
Hatha Systems/KDM Analytics
Veracode

Breach Security

http://www.sans.org/top25errors/

annm SANS Institute - The Top 25 Most Dangerous Programming Errors

ERs 2| +| Bl hetp:/ fwwew.sans.org/ resources /top2 5/

why SANS/

I

The most trusted source for computer security training, certification and research.

pick a course winy certify! register now

portal siorrm cenler

The Top 25 Most Dangerous Programming Errors

Giving ClOs a Way to Measure the Security of the Software They Buy and
Build

The SANS Institute and MITRE are working with the top software security experts in the US and Ewrope 1o
Create & LS of the 25 most s-mn'lum programiming ermors ERAL CAn [ead 0O Serioul software vulnerabilities.

The collabaration leverages experiences in the development of thir SANS Top 20 attack vectors
yed 1 wiwier 8N Or g/ topd0/S) and MITRE S Common 'Weakne4s Enumeration (CWE) (i

------ fowe mEre.orgl).
The Top IS L5t will leverage and nol Be § compeUitor o the DWASP Tap Ten, bechute B3 poal B 1o Capiume
8l kinds of software, not just web applications, and the OWASP people were the firsd o be invited 0

participate in this project.

The main goal for the Top 13 Uist & (0 stop vulnerabdities at the source by educaling programmerns on how
to eliminate all-too-common mistakes before software & even shipped, The (at will be a tool for education
nd Fwareneid that will help programmen o prevent the kinds of vulnerabilities that plague the software
industry. Software consumers could ute the same st (o help them o aik for mone Lecure softwane. Lastly,
and maybe more importantly, software managers and CIOs can use the Tap 15 18T a5 8 measuring soick of
progress im their efforts (o secure thedr software

On Movember 24, Bob Martin and Steve Christey of MITRE sent the frst draft of the Top 25 [plus 10
potential extras) (o a dopen of the Lop software security experts in the US and Europe all of whom have
agreed to work together to bulld the consensus |st. Three examples from that tst are reproduced below.

The Top IS5 will get its first public atring the week of December 10, 2008 in Washington DC. Following a
period of public comment and improvemaent, the 15t will be published and will be provided (o appdication
software security testing vendors 30 they can integrate the Top 25 into thedr security sssssment
reporting.

Additional information Contact: toplS@sani. ong

EXAMFLES FROM THE DRAFT VERSION OF THE TOF I3
e T T

Noter these CWEs,

and all
review by participants.
list is published.

other entries in the draft, are subject to further
They might be modified or removed before the final

© 2009 MITRE

Indvidual CAPEC Dictionary Definition (Release 1.2)
Blind SQL Injection

Attack Pattern / Pattern Abstraction: Detailed
ID

Typical High

Severity

Description Summary

Blind SQL Injection results from an insufficient mitigation for SQL Imjection. Although suppressing database
error messages are considered best practice, the suppression alone is not sufficient to prevent SQL
Injection. Blind SQL Injection is a form of SQL Injection that overcomes the lack of error messages. Without
the error messages that facilitate SQL Injection, the attacker constructs input strings that probe the target
through simple Boolean SQL expressions. The attacker can determine if the syntax and structure of the
Injection was successful based on whether the query was executed or not. Applied iteratively, the attacker
determines how and where the target is vulnerable to SQL Injection.

In order to achieve this using Blind SQL Injection, an attacker:

For example, an attacker may try entening something like "username’ AND 1=1; --" in an input field. If
the result I1s the same as when the attacker entered "username” in the field, then the attacker knows that
the application 1s vulnerable to SQL Imjection. The attacker can then ask yes/no questions from the
database server to extract information from it. For example, the attacker can extract table names from a
database using the following types of quenes:

“username’ AND ascii{lower(substring((SELECT TOP 1 name FROM sysobjects WHERE xtype='U"), 1, 1)))
> 108",

If the above guery executes properly, then the attacker knows that the first character in a table name
In the database is a letter between m and z. If it doesn't, then the attacker knows that the character must
be between a and | (assuming of course that table names only contain alphabetic characters). By
performing a binary search on all character positions, the attacker can determine all table names in the
database. Subsequently, the attacker may execute an actual attack and send something like:

“username’; DROP TABLE trades; --

People are Starved for Simplicity

Goc ,8[,@ Analytics ramartin@mitre.org | Settings | My Account|Help|Sign Out

DR T owe.mitre.org |

i Dashboard Export ~ | = Email Beta Advanced Segments: All Visits

» Saved Reports

A Visitors Dashboard Oct 1, 2008 — Oct 1, 2009
% Traffic Sources 300,00 172,151/day

_ Content
= Goals

800-3,000/da

Wi 100-300/da

Custom

Reporting ¢ e m—

© 2009 MITRE

rintable PDFs of Entire CWE Now Available

CU/

Common Weakness Enumeration

§ amaiain -Des chajeed Dictienars of Naffuare Weakaos T pes

CWE Version 1.4

Edited by

Steven M, Christey, Conor Q. Harris, and Janis E. Kenderdine

Project Lead:
Robert A Martin

MITRE

CWE Version 1.4
Tabke of Conlanls

L e R

U0 10 SjqeL

CWE Werslon 1.4
CWE- 17 Localion

roduced during e
" Page
a1
s
A s
apg e

foerereeritad

Pt

ddgddEl”

gdd

=43

frenenial condiions

. Page
LI
[
[

1

CWE Vesrsion 1.4
T "BOL ingaction)

es
Al e 500

o Bxconis, The
0N User has he

& AT
Ml Conté

in SO, B @ usar
Itk mary bypass
oala S d

¥ SOCESEINg
Sl ropdee Are

i PAOCITHTHTIE P
prevent any datn

Pows SO gacton

Ity enoaded outpul
vt Bsans

Bon bésbween

.‘Iul-\.l"r_'l 105 QAMNNEDIg O] SanIt 4 SE8-3 D

;
=)

[, el

CWIE Viewmiam 1.4

e

Chasaciery and
P hemory Manageme!
foo - g st R

b3 - F esrrersest (TR

01 - Sagruaks (5a), T4
13 - Etidl Fiafalig [E R

|25 bbreare-nis WS

I - POSES (POSL. TH

bcsr® [Milas-in B Rk

Comparion Enan, 0
oarailicn, 38

per infcemation | W7
-l Setudly, SR
(], 38

e, 1
hetie Dueciory, 560
=10

| &1
It irbead of Oyt

I Mockicasion of Secuity
pa Pftenn 80

™My

pats] 245
. e

feschcary el incusseT

frsrcirr Pereraom

preal Mcaditerr 331
L

Ity L, Sebd
i), A

Dursg frmrader
ot mpcticen), 11
1%

E woenann, &8

b Escapbon, 429
el SET

i

et Tirming Channsl, 538

BT

X Py

CWE Veralon 1.4
e

oy il Wb AR
ki Aufhorain

b i Dbt WAL Posmten

Jary Aumentcanon 334
porese: e, 52
fetion, 870

. 0

|- reract wate My

&0
rguves] 4

Fompainon, S0

i

pon JiE

i, €21

e a7

AT A Fosgolien
kan

JERT & St i)

i
T]
preciones &1
L=

Proweiaes g

L5

Bl

ey The Security Development Lifecycle : MSOB8-078 and the SDL
< = | [| | -+ | & http:f /blogs.msdn.com/ sdilfarchive/2008/12/ 18/ ms08-078-and-the-sdi.aspx Q- Goog

r——— ™ r x o = -
_‘ g ,TI Welcome to MSDN Blogs Sign in | Join | Help
I | Seancn

MSO0EB8-078 and the SDL Fridiik

Hi, Michael here.

Every bug is an opportunity to leam, and the security update that fixed the data binding buwg that affected

Internnet Exgplorer users is mo exceplion.

The Common WVulnerabilities and Exposures (CWE) entry for this bug is OWE-2008-48449.

Before I get started, I want to explain the goals of the SDL and the security work here at Miocrosoft. The SDL is

designed as a multi-layered process to help systemically reduce security vulnerabilities; if one component of

the SDL process fails to prevent or catch a buwg, then some other component should prevent or catch the bug.

Crawl Wwalk Run The SDL also mandates the use of security defenses whose impact will be reflected in the "mitigations"

section of a security bulletin, because we kmow that no software development process will catch all security

SDL sovr et bugs. As we hawe said many times, the goal of the SDL is to "Reduwce vulnerabilities, and reduoce the sewerity

of wihat's missed."

In this post, I want to foocus on the SDL-required code analysis, coode review, fuzzing and compiler amnd
operating system defenses and how they fared.
Mews Backg rournd

The bwg was an invalid pointer dereference in MSHTML DLL wiven the code handles data bimding. It's
important to point ouwt that there is no heap cormuption and there is no heap-based buffer owerrun!

threat modeling

When data binding is used, IE creates an object which contains an array of data binding objects. In the code
in guestion, wihen a data binding object is released, the array lemgth is not cormrectly updated leading to &
n b r Function call imbo freed meemony.

The wulnerable code looks a little like this (by the way, the real armmay name is _arnyPXFer, but I figured
ArrayOfObjectsFromlE is a little more descriptive for people not in the Intermet Explorer team.)

int MaxIdx = Array0fObjectsFromIE.Size()-—1;
for {(imt i=0; i <= MaxTdx; i++) {
if (ArrayOfObjectsFromIE([i])

continue;

ArrayOfObjectsPromIE[i]-—>TransferPromSource() ;

b
Here's hwow tihe vulnerability manafests itself: if there are two data transfers with the same identifier {so
Manddx is 2}, and the first transfer updates the length of the ArrayOfObjectsFromlIE array when its work was
done and releases its data binding object, the loop count would still be whatewer Maxidx was at the start of
the loop, 2.
This isla time-of -check-time—of -use [TOCTOU) bug that led to code callimg into a freed memory block. The
Commipn Weakness Enumeration ((CWE) dassification for this wvulnerability is CWE-367.
/ﬁx was to check the maci mum iteration count on each loop iberation rather than once before the loop
P N S N T = e ok Fao = e v W b o = H = = .

s b ok e ibla d o tio

a time-of-check-time-of-use (TOCTOU) bxg that led to code calling into a freed memory block. The

on Weakness Enumeration (COWE) classification for this vulnerability is COWE-367.
TOCTOU IoUt. WE Wil UpOaTe OUT IT3Imung 1o Soancas tmis.

Owr static analysis tools don't find this because the tools would need to understand the re-entrant nature of
the code.

Fuzz Testing

CWE Outreach: A Team Sport

May/June Issue of IEEE Security & Privacy...

METH .t sy CWE-382: Cross-Site | CWE-119:
WL I8 =y Rogues! Forgary Furilre: o Gorstrain

I ! gl G Py Opera
| . [By AR aLE Al T sl %
kL rle i % . Banic Tralning
- ! (= sl P Pimne Mo bt loe dl rhord o e
e ol g - - [" g st Sl

e EP—— RIS SIS DU Improving Software Security
T by Eliminating the CWE

k] e | | Cre e Top 25 Vulnerabilities
i e i [H— .ifm.[:'nm.l'ﬂ:pmr. B |ty

el i : ; CWE-78: Fadure :-.I: sqo o . . I CWEMSAMS Top M Mos Disgen T dsct ,--; I,... m Wik
g L fo Prasorve 05 i b Mt e | e SR TS ke ma lomen awee amrar i o 3
e i Comnmnd Strecture | cn 1w e G ez " : . . iy sty |
CWE-23m: longf| Mimy Syl :
Use o fresurfliceatly el ity e Ly ey . . '

Rarndom Valves CWE-426: ety gt | LS

pat; LT i % D i Caiai G
v L * . % * wsi sed v T bedl by i CE LN . - Baw il ol
e e erperinic] leomin'm et paral T) 27 L ik are e photy e e '
e " Bl T el el o it _ | Extormaf Comtnod G, bty s . = g i iy "r
vl T Yk e b g e of Critical Seate) e b e P | CWE-20: Imprepor

e e Y T il et i) E d whe Buig oha can G] areer

el] wemmrr gt | was ot of 1he snsey prop 0

{f.'pur Waislation

CWE-319: Cleartaxt T i et e
b Transnyssion of oy g '

CWE-250: Erecution » . d Soniitve information ; apbar : . b s : '-I iy
with Lamecossary 2 x 1 diy CWE-209- ety S A= s

Privile, TETE whily o . 18
T i . a i i v w | Error Message Lt

Information Leak ..-I : |:I '.I, Lk T iy

ol g aa TR 1 Erton cosbormstem TEL 4 gt

L R Y L] w e ol i m.?j

K X o i, T e i, ol crrtai ™ T
[, - e i il WD e of Flmunne or

o Dk o FL iy oy - e — Y 3
3 GLEET T A mann mamy ol ovw gma wbary Wy deiy @ they
W e IR By el b b VR . ! « dai i m
CWE- 4 WL o b oy B S it g T T
Failwre o
r Glomeratiol
T - 1}
I ' il
i d

Basic Training

L pot b MO BB L e e | CREEa: i e
gk s b 13 e | W i — SRR, .

i) [e g e s, - 68 Improving Software Security by

o s bl | e o e Eliminating the CWE Top 25 Vulnerabilities
eptharhemdefuoretn purioulvbain Micrart Howarn

Manually review code after security education

Manual code review, especially review of high-risk code, such as code that faces the
Internet or parses data frem the Internet, is eritical, but enly if the paople perform-
Ing the code review know what te leck for and hew to fix any code vulnerabilities
they find. The best way to help understand classes of security bugs and remedies
Is education, which should minimally include the following areas:
= € and C++ vulherabilities and remedies, most notably buffer overruns and
integer arithmetic issues.

= Web-specific vulnerabilities and remedies, such as cross-site scripting (X55).
= Database-specific vulnerabilities and remedies, such as SQL Injection.

= Comman cryptographic errors and remedies.

Many vulnerabilities are programming language (C, C++ etc) or domain-specific
{web, database) and others can be categorized by vulnerability type, such as injec-
tian (XSS and SQL Injection) or cryptographic (poor randem number generation
and weak secret storage) so specific tralning In these areas [s advised.

Resources

» A Process for Performing Security Code Reviews, Michael Howard,
IEEE Security & Privacy July/August 2006,

» \MNET Framewerk Security — Code Review;

+ Common Weakness Enumeration, MITRE; http://cwe. mitre.org/
» Security Code Reviews;
hittp: ffwww.codesecuraly.aro/Wiki/view.aspx/Security_Code_Reviews

Security Code Review — Use Visual Studio Bookmarks To Capture
Security Findings; http://blogs. msdn.com/alikl/archive/2008,/01/24/secy

ity

irity Code Review Guidelines, Adam Shostack;
i weww.verber com/mark/cs/security/ code-review. html

+ OSWASP Top Ten; http://www.owasp.org/index.php/OWASP_Top_Ten_Project

1 SAFH

mu Driving Secu

CWE
CAPEC

Testing

Testing activities validate the secure implementation of a product, which red
the likelihood of security bugs being released and discovered by customers a
malicious users. The majority of SAFECade members have adopted the follg
software security testing practices in their software development lifecycle. Thel
is not to "test in security,” but rather to validate the robustness and secur|
the software products prier te making the product available to customers,
testing methods do find security bugs, especially for products that may not
undergane critical secure development process changes.

Fuzz testing

Fuzz testing is a reliability and security testing technique that relies on bul

'SAFECode

i n Cote

1 Driving Security and Integrity

Fundamental Practices for
Secure Software Development

A Guide to the Most Effective Secure
Development Practices in Use Today

OCTOBER 8, 2008

Leap WriTer Michael Howard, Microsoft Corp.

CONTRIBUTORS

Gunter Bitz, SAP AG

lerry Gochran, Microsaft Corp.
Matt Cales, EMC Corparation
Danny Dhillon, EMC Corperation Alexandr Seleznyov, Nokia
Chris Fagan, Microsoft Corp. Reeny Sandhi, EMC Corporation
Cassio Goldschmidt, Symantec Corp. Janne Uusilehto, Nokia

Wesley Higaki, symantec Carp. Antti Vihi-Sipils, Nokia

Steve Lipner, Microsoft Corp.

Brad Minnis, Juniper Networks, Inc.
Hardik Parekh, EMC Corporation
Dan Reddy, EMC Corporation

Intentionally malformed data and then having the software under test consume the
malformed data to see how it responds. The science of fuzz testing is somewhat
new but it is maturing rapidly. There is a small market for fuzz testing tools today,
but in many cases software developers must build bespoke fuzz testers to suit spe-
clalized file and network data formats. Fuzz testing is an effective testing technique
because it uncovers weaknesses in data handling code.

Resources
» Fuzz Testing of Application Reliability, University of Wisconsin;
http://pages.cs.wisc.edu/~bart/fuzz/fuzz.html
* Automated Whitebox Fuzz Testing, Michael Levin, Patrice Godefroid and
Dave Molnar, Microsoft Research;
ftp://ftp.research.microsoft.com/puby/tr/ TR-2007-58. pdf
» [ANewsletter Spring 2007 "Look out! Tt's the fuzz!” Matt Warnock;
hitp:/fiac.dtic milfiatac/download/ Vel L0_No1.pdf
+ Fuzzing: Brute Force Vulnerability Discovery. Sutton, Greene & Amini,
Addison-Wesley,
[t G RARAL MM d-lc oY ManuAl ISECOM. —
* Common Attack Pattern Enumeration and Classification, MITRE;
http:/fcapec. mitre.org/

#t! SAFECode

i
liae: . Oriving Secur

and Integrity

© 2009 MITRE

Common Security Errors in Programming

Top 7 Secure Coding Web Sites

Standards www.securecading.cert.org

How to make sure

The SANS Common Security Errors in Programming map illustrates

the software thatarer ble for the majority of the publicly known vulnerabilities
discovered in 2006. It Is based on the CWE (Common that pi

these weaknesses in source code and eliminate them. The CWE was developed by MITRE and
d by the Dep of Homeland Security. The numbers between parentheses

represent the enu ion IDs for each weakness. Numbers

between square brackets are direct children of the weakness listed. CWE IDs

can be found at the MITRE CWE website or accessed directly by putting

aunified,
measurable set of software weaknesses that will enable more effective discussion and action to find

programmers can
avoid these errors:
Sign up for the SANS
Secure Programming
Assessment Program at
WWW.sans-ssi.org.

www.cert.org/secure-cading
4-C www.open-std.org/jtc1/sc22/wg14

1-The C++ Standards C

org/jtc1/sc22/wg21

chas www.greenend.org.uk/rjk/2001/02/cfu.html
samate.nist.gov/SRD

mittee

SOURCE CODE

g.cert.org

“6 MEMORY LEAK
the number (in place of ###) in the following URL: 0\,\ e i
http://cwe.mitre.org/data/definitions/###.html F“ R P (" IMPROPER RESOURCE SHUTDOWN OR RELEASE -
ittt i, QOB R 9 MR s piire a2 SN
A RIS — o o RS DOUBLE FREE (415)
'EREOR CONDITIONS, RETURM VALUES, STATUS CODES IR PRGNS RN ?.Q L Lol fe m & % %%. 004 % - EXPLICIT CALL T FINALIZE
- MISINTERPRETED FUNCTION RETURN VALUE DTNAMIC CLASS LOADING 2 S NG HEAP MEMORY
MISSING ERROR HANDLING MECHANISH T R R RS Q\ "ERRONEOUS CLONE METHOD 5 > % % ‘% % ‘/’ UNTRUSTED SEARCH PATH (m, IMPROPERLY FREEI .
— — Sons 2) %‘a& R 5] -
OFTEN MISUSED: PATE MANIPULATION TRUSTED BOUNDARY VIOLATION -, CHANNEL ERRORS
Pl nd stions, t ‘OFTEN MISUSED: PRIVILEGE MANAGEMENT WELYING O PACKAGE-LIVEL SCOPE o UN| WIN
== § € \ ‘\\\ R, e
.ﬂ.::::::!::ﬂm mnnrmumm BUFFER g ?‘ Ac % @ab %, QN%% Q%mm;'a:l;’:::r:r:-
e — L %’%
el v
SESSION FIXATION %% % Fliogey, m‘“'“hn INCOMPLETE OENTIRCATION OF P LLADED FLE VABIABLES (PHP)
INTEGER OVERFLOW (190) — Y . e
e s HARD-CODED PASSWORD (259) “s %{,;3 g,
mnn:::um SYMBOLIC NAME NOT MAPPING TO CORRECT ORJECT EMPTY PASSWORD [N CONFIGURATION FILE x o§ M%
SIGNED TO UNSIGNED CONVERSION ERROR (195) %mmmnnm@ﬂ B % % % ""“f:%
UNSIGNED TO SIGNED CONVERSION ERROR (196) o Mmmm %""",‘,,':_"‘:',,;,‘;';‘,‘,m ‘% % “%a Tt
'HUMERIC TRUNCATION ERROR e %tl"‘ mlm"ﬂ (59) ALLOWING UNCHECKED PASSWORD AGING
T — o g Yo INSUFFICIENTLY PROTECTED CREDENTIALS (522) "y,
Q —— ianissmse oo
I %’%, ~ COMMAND INJECTION (77 [78]) | %%“?;.':.".“.';.’.'"ﬁ.m.m,..
- N —
—————— , SQLINJECTION (85| * *i% CROSS-SITE REQUEST FORGERY (352)
PERMISSIVE WNITELIST AT % % FAILURE TO ADD INTEGRITY CHECK VALUE
INCOMPLETE BLACKLIST (184) < % 7 o, Ao K R TR
 —— Q ‘h;;;‘ CRLFINJECTION (93) " AIRETO ENGHFTDATAGT
oy DRSO ., PLAINTEXT STORAGE OF SENSITIVE INFORMATION (312)
[INFORMATION LEAK (200] % —_— “"::f% KEY MANAGEMENT ERRORS (320 [EFT1])
e p— UNBOUNDED TRANSFER (CLASSICBUFFER OVERFLOW(120) (62, ———— Y
S A v onomo i) e <o g, WS REQURED GRPTOGUPHCSTEV G35
— (Gy,, WEAKENCRYPTION (326] |
% mm:ﬂ:‘:'_:;:::smgm PHP FILEINCLUSION (98] iy, WEHKENCRYPTION (326

D OWASP Top 10/Top CVE Causes [OWASP Top 10

'DIRECT STATIC CODE INJECTION

REVERSIBLE ONE-WAY HASH (328)

4t WRAP-AROUND ERROR (128)

NOT USING A RANDOM
2006 Top CVE Causes Other CWE's (UNCHECKED ARRAY INDEXING (129) IVWITH CBC MODE (329)
Major contributors to this project: } ~ PAR - (1300
p
OTHER LENGTH CALCULATION ERROR (131)
- - ACCESS CONTROL ISSUES (285)
|T @ O ASP - RS - ccrsscomoussuzs (285)
‘ U t I EE E Scltawe " The Open Web Application Security Project STRING Em.s (1“) mm" Iss'lEs (215)

Handler Errors

Behavioral Problems

Channel and Path Errors

Deployment of Wrong Handler

Chanmel Errors

ThSlE(mm;mn!}Emru Progr mem ingrreapil| st st s oftwans e ki sthea v res p ovesibl
i roportadin tha Commos Welserabiltios and Enposras
Blmnll

Speca thanksothe CWE Team atITRE

B iudmﬂnmﬁm

udbypllT FEandspon-

op ngarus Frog rrmm g Emors
af tha MITRECWE W siba or acra mad di by by putt gt sumber(in placa of 283 ||thi1|lnlg IR

hittpe/cwa mitre.orgydatadefinitions /###. htm|

Failure to Fulfill APl Contract
(‘API Abuse’)

Missing Handler

1 Behavioral Change in New Version or Environment

|| Expected Behaviar Violation

Failare to Protect A lbernate Path

Dangerous Handler not Dissbled During Sensitive
Operations

Unparsed Raw Web Content Delivery
! I;tlepl?plm Identification of Uplonded File Variables
[

Initialization and
Cleanup Errors

Uncomtrolled S=arch Puth Element

Failure to Clesr Heap Memory Before Release
{Heap Inspection’

Unqquated Search Path or Element

Untrusted Search Path

Call to Non-ubiguitous AP

q

MNS MITRE

2009's CWE/SANS Tap 25 Mast
Dangerous Programming Errors
200%s Commaon Programming
Errors

Security Features

'1 Credentials Managemeant l

| Cryptographic lssues

«Unwarified Fassword Changa
«Mizsing Fassword Flald Masking

Use of Inherently Dangerous Function

for Passwonds

1 Unrestricted File Upload

User Interface Errors

Insecure Default Varinble Initializtion
External Initialization of Trusted Variables

i Non-exit on Failed Initialization

| Missing Initialization

] Ul Discrepancy for S=curity Festure

! Incomplete Cleanup

I Multiple Interpretations of Ul lnput

I Ul Misrepresentation of Critical Informatien

Improper Cleanup on Thrown Exception

Data Handling

II Mumeric Errors |
& Usa of Incorect Byta Ordaring

sUncheckad Arrayindaxing

= Incorrect Conversion betwaan Mumark Tepas
~Uinaicp actad Sign Extenson
- Signad to Unsigned Canvarsian Emar

- Unskgrs d o Skgneed Comvsrsion Emar
- Numsaric Trunzatian Emor

ncomect G o Ir A
~Intagar Crvurfiow or Wraparound
- INtagarUndarficw (#rap orrapEround)
- Off-by-ona Emor
- Dilvida By Zara

| Representation Errars
|| +ckansing, Canenicalization, and Cempariion Errars
«Rullana on Data/Memory Layout

| Inl«rmnwn Management Errors

PSS ke
Informtion Liak Trrough SentData
-FrivacyLaak through Data Quaries

- Disrparey tamation Laaks

- Crogs-boneta ry Chiansing Informatica Lsak
- Inbanded Informetion Leak
= Frooas s Environment Information L ek
- Infermtion Leak Thr ough Dabug Infor mation
- Sar Indleaned
= Information Leak of System Data
- Information Laak Through Caching
- Infor mation Laak Through Emvirommantal sl
-Ala and Diractor yInfonTation Laaks
-Information Leak Through Quary Strings in
GET Raquast
- Information Leak Through Indwdng of Frivate Cata

«Infermation Less or Gimission

= Containmant Emors iContainar Errors)

Improper Access of Indexable Aesource ['Range Error’]

Type Emen

| String Errors

| Data Structure lssues

Imiproper Handling of Syntactically Invalid Structure

Modification of Amumed-Immutatlz Dats (MAID)

Error Handling

Multiple Binds to the Same Part

J2EE Bad Practices Direct Management of Connections

| Incomect Check of Function Retumn Value

Eror {onditions, Retutn Values, Status Codes

Ofen Misused: Arguments and Parameters

Mhech

Failure to Use a 5t ror Han dling

Failare to Catch All Exceptions in Servlet

Mot Failing Securely [Failing Open’)

Uncaught Exception
-

= Mot Using Fassword Aging

«Passward Aging with Long Expirstion

=Insuffickently Protacied Credentias

= Waak Fassword Recovery Ma dranlsm for Forgattan
Paazward

| Often Misused: String Management

Mizzing Custom Error Page

Pointer Issues

Retum of Pointer Value Buiside of Expected Range

Use of size: ofl) on a Painter Type

« Fathvama Traversal and Eqmﬂlncﬂ Errars
« Frocess Control
= Missing XML Valldation

-Fallura 1 5anittza

[LOAP Injaction)

XML Injacticn [k BIind XPath Infaction)
~Fallura o Sankizs CALF Sequances [CALF njection)
~Unoontraliad Forat Siring

-Fallura 10 Sanittza Spacial Bamarts Intoa
Ciffarant Flana
~ngumant infaction or Modcation

-Impropar Controd of Resourca idantifers
[“lmun:lln C .j

= Fallura to Santtize Daka inta 3 Difrant Plana [Injection’]
i = T T e e

Incormrect Painter Scaling

Use of Pointer Subtraction to Determine Size

Assignment of & Fiwed Address to a Pointer

Attenpi to Access Child of a Mon-structure Pointer

JIEE Bad Practices: Direct Use of Sackets

Unchecked Return Value

Failare to Change Warking Directory in chroot Jail

1 Insufficient Verification of Data Authenticity

= OriginVialldation Ernor

~Imprapar VeriNcatken of Cryptegraphic Signamir
=L of Lass Trusted Sourcs

= Acprtance of Extranasus Untrustad Data with
Trusted Data

| Reliance on DNS Lookups in a Security Decision

Failure to Follow Specification

Failure to Provide Specified Functionality

Web Problems

impraparly 38 DNS
-|mmuﬂ:1‘m Distinction

-Fﬂllunh Mdlnhg'ln’ Cﬁmﬂiillﬁ
=Imprapar Valldation of Integrity Chack Valus
=Trust of Systern Evant Data
= Raliarecs on Flke Narm or Extenston of Exteenally-

Failare to Samitize CRLF S=2quences in HTTP Headers
(HTTP Response Splitting’]

Lpf
«Rallaca on ObfUscaten o EnTyRton of Saaurity-

Time and State

Inconsistent Interpretation of HTTP Requests "HTTP
Request Smuggling’)

swithoutintegrity Chacking

«Kay Managamant Erors
« Missing Required Crypographlc Stap
« ot Lking a Random IV with CBC Moda

«Fallura to Encrype Sansitvs Data

«Ravarsitia One Wy Hash
slInadequate Enurpﬂau ﬁh'nngm

s Parmission |ssuss

TThcarrect 3 ot nng

- Ingecura Inharited Parmizsslons

~ Insacure Presansed inherfted Famissiors

- Incorrect Exacution-Assigned Fermisdons

- Impraper Handing of nsuMdant Pammizsians
or Privikges

- Impropss Prasaration of Parmizsions

- Expecesa d Unsrks A ctive Mathod

- Parmbssion flaca

I Privacy Viclation

I State lssues

= Incornpikate Internal Stats Distinction
« Stata Syndyonization Emor
= Mutabi Objects P sed by Rataranca

Improper Sanitization of HTTP Headers for Scripting
Syniax

| Use of Nan-Canenical UL Paths for Authorization
| Decisions

Ilﬂd'icator of Poor Code Quality

Reliance on Cookies without Validation and Integrity
Checking

| Pascword in Confi guration File

| Insufficient Compartmentalization

I Reliarce on a Single Factor in a Security Decision

i Improperly Implemented Security Check for Standard |

I Insufficient Psychological Aeceptability

1 Improper Authentication

session Fixation

Concurrency lssues

Temparary Fil= lssues

aF
« Misintarpratation ofnput

« Unchacked Inpurt for Loop Condion

= Null Byta Intaraction Error (Falson Nul Byta)
~Diroct Usa ot Ungk SN

= Impropar Output Sanitizton fof Logs

i bl fimemna it o _ —

= Uss of Extarnally-Coniralled nput bo Salact Classes or
o ['Lineata Rafiection’]

= REFNET

Covert Timing Chanmel

Technology-Speci fic Time and State lssues

Symbelic Name not Mapping to Corect Dbject

|| NULL Pointer Dereference

| Incomect Block Delimitation

| Ornitte d Break Statementin Switch

' User Interface Security lssues

| Relisnce on Security through Obscurity

I Protection Mechanism Failure

| Inzufficient Legging

| Undefined Behavior for Input to AP

1 Logging of Excassive Data

| Use ofHard-coded, Sexurity-relevant Constants

.I Certificate lssues

Reliamce on Cookies without Validation and Integrity
Checking in a Security Decision

Unzafe Functicn Call from a Signal Handler

R

Signal Errors

Unrestricted Exterally & coessible Lock

Double-Checked Locking

Insufficient Session Expiration

Inzufficient Synchronization

Use of a Non-reentrant Function inan

i Nt Ustnginpi
Framework

=« URL Radiraction to Unirusted Site (Dipen Radirect’]

=Variabla Extraction Erar

-Llnnlldimﬂlmuen Honklrgummn

eiciiwrratiiat frintie e e
alm nrumnwlldilmlnlmulﬂ!
|_NEITHER |0 Con‘tral Coda

= Use of Paith Manipufakion Function without Maximurn-
sizad Buftar

Unsynek 1 Comtext

p omment

| Return of Skack Variable Address

Insufficient Encapsulatibn

Miszsing Default Case in Switch Statement

lMobiIeEod:quuMiuing Custom Error Page |

Reliance an Package-level Scope

| Expression lssues

|| Uge of Obsalete Functions

| Use of Function with Inconsis tent lmplementations

|| Unused Variable

Impraper Control of a Resource Through its Lifetime

| Dead Code

~Fubiic donaatikl| Mathod Without Final (Do H k| |
+Usa of Innar Ctass Contining Ssnsttiva Data
«Crithcal Pubsl|cVartabla Without Final Meekfar

e s 5
« Ay Daclarad Publlc, Final, and Static
« finalizsf] Mathod Dadared Public

J2EE Framework Saving Unserializable Ohjects to Ditk

Deserinlization of Untrusted Data

Serinlizable Class Containing Sensitive Data

Information Leak through Class Cloning
Public Data Assigned to Private A may-Typed Field

Exposure of Aesource to Wrong Sphere

Incorrect Resource Transfer Between Spheres

Use of s Resource sfter Expiration or Release

|| Resource Manngement Eimors

Leftover Debug Code

Empty Synchronized Block

Use of Dynamic Class Loading

Privaie Array-Typed Field Returned From & Public
Method il

clone() Methed Without supenclone()

Public Static Final Field References Mutable Object

Extermal Influence of Sphere Definition

Explicit Call to Finalize()

Comparizon of Classes by Name

Exposed Dangerous Method or Fumction

Uncontrolled Recursion

| Reachnble Assertion

Dain Leak Between Sessions

Critical Varisble Declared Public |

Redirect Without Exit

| Use of Potentinlly Dangerous Functicn

Trust Boundary Vialation

Access to Critical Private Variable vin Public Method |

—T=—=

WUS000-CPF. Compile cleanly at high waming beves - CERT Secuse Coding Standards i

—_———
1 L flﬂm (TP | ek s preoading et sy camfioene Sitpay ok solon VBC0-CY - Compie - Cinankys at+ ighe maming 4wty

-

g St ¢ Wrren (VST WY Corple ey i bt g ek

TaE CERT C
SECURE CODING
STANDARD

NECOHCPP. Compila chuany af Righ warming liveis
Lo 020 ai0g T el) el S I i 3 I R mErangl By iy D ot
lersing o 0 (500 96 [98F Sarton 111

§irbrmrg mpa i st € Rl P e et Ertie o W Syrep | i rErmes) i ool f DPIRDT oAl Srtan i witee F By mele i Y el e O e 1 Y
Do Fy i i il > SErrit et -ietes DepET Semlige e 3 " 2 crSiEn

iy | b, FEL, SR S Sagn o terE i 1P § SRR s

Mg e oSy bk gkt 0 B ey

Eroeicrns

NSNS Corlery Ot At e by ot oo Pl i e o 650 0 19w sk 0 o et o et by s e 3 oty refninie B el oo - e oo e, Bl T
ot e b ir 1 Ve o COPYer colnny oy A ST SOSKE S APy, SOTH COMSIY, N i 1R PR, ST B L bt et 7 I, 460 O S TG M B T
a\'f'ﬂ.l\.'ll"ll'm'llNll\'\l'r'."_"'\l'rﬂ'lll'_'.ﬂl'\d P LR T el

D ey ol g By g i S T . o End B i B T o nd St | IR Y, L 8 A Salzhg T e] v Lt i palh

Rl Rirbrickairt

Eirvutng selstorn o iyeta e and ot st o imaty s by syl Pl on i D et o rpbry oo et P e d e st ram

- » * * |References

> ¥ [1SO/IEC 9899:1999] Sectio

Sutter 05] Item 1

ROBERT C

[MITRE 07] CWE ID 563, "Unused Variable"; CWE ID 570, "Expression is Always False®; CWE ID 571, "Expression is Always True"

-| [Seacord 05a] Chapter 8, "Recommended Practices"

n 5.1.1.3, "Diagnostics"

—

Refprurcei

R B i) St 110, Tty
'-iﬁ"ﬂrhﬂh ui e, 09 3 T, “xprmnon o St Filer”, (8 5 71, ageninen o M Tra
'&;_;:;]-: Dty |, Seeewded bacion”

© 2009 MITRE

Today Everything’s Connected

Your System is y
attackable... {55

L I - £
X " N,
y | ‘L"'l. "‘-?5-'\
. o] A .
?p*_ '.‘ ¥ ‘::a.__,

' ,;;{L When this Other System gets subverted
Seconty through an un-patched vulnerability, a
. mis-configuration, or an application
weakness...

Cyberspace & physical space are increasingly
Intertwined and software controlled/enabled

Water Public Health Telecommunications Banking and Finance Key Assets

Critical Infrastructure / Key Resources

Ports Nuclear Power Plants
Reservoirs Cable Government facilities
Treatment Plants Hospitals Fiber FDIC institutions Dams

Services Software
* Managed Security « Financial System
e Information Services « Human Resources

Cyber Infrastructure

Need for secure software applications

“In an era riddled with asymmetric cyber attacks, claims about system reliability, integrity and

safety must also include provisions for built-in security of the enabling software.” o\ oo

The Software Supply Chain

Software
\/\ Other
s
Programs w - |

?

Program
Office

Outsource

Prime
Contractor

Global

Foreign
Acquire Develop
In-house
Off-shore I/_\/ Foreign
@ Location
Software

Foreign

us
| Developers

Acquire

Develop Outsource

In-house

2 L 2

?
“Scope of Supplier Expansion and Foreign Involvement” graphic in DACS www.softwaretechnews.com Secure Software

Engineering, July 2005 article “Software Development Security: A Risk Management Perspective” synopsis of May 2004
GAO-04-678 report “Defense Acquisition: Knowledge of Software Suppliers Needed to Manage Risks” © 2009 MITRE

D

http://www.cnss.gov/instructions.html

Our Systems are Composed of Elements
from Many Languages and Environments

~" SNX360
remieem—

[0 UA = Universal Analyier UYK20

tor st
it <o iy e

Java/J2EE

ZGLS

7 pLA

3GLs 4GLs

Y Pascal

" Natural
BASIC

/" VisualBasic

ol

Python

© 2009 MITRE

Systems Are Complicated...

(Inte *aces to and from e
0. Warehouss &é not

And Software Is Complex Too...

O . A R R R P . S

e s s, o g

'I:'i'\“\ -
© 2009 MIT

N

Some Static Analysis Tools Focus on Pulling

} 5
ey
g
e i
e S
1|
13
— —

Structure Out of the Complexity ...

o
core_hrowser .7 | en

synergy_adk
5

_ IWIAEV@
e

B AR
257 /@

- Fa- % -
1 £ 1
— Py e — - _ .
| — N et L N————— S
T'RECTORY voft 437 LY I 4 E830 1348 —
= 530 = 03 S
: synergy afw --- x

gine_gsm_sta. .
T

7
A

engine_scim o
L
b Ay

engine_seem engine_rtime|

engine_shem

At
}%engmeim

= [XAk

engine_audio ‘ J

A

a7 T
o ik

engine_hapi
ElE

F
¥ 1706

applications

sza
A ;Jﬁ
r 3

¥

synergy_device_layer

-

¥ 3175

synergy_adk

4 1:5‘3\

._r—""'ff
W’j ¥ 11

\‘ synergy_itap

synergy_main

r 9

WA
A

synergy_uis

'Kl

¥ 12444 7d

engines

© 2009 MITR}"

Static Analysis is about collecting information and
capturing knowledge

REGTORY vobs 4 258 I 1628

Feature code
1706

Q \ applications

A3) I 71 g
512, 6 175
synergs!%layer 4204 25y Synergy~uis i
/ Buffer
: 4 ¥ 11
55—1'2"' synergy_adk _ I
: M| synergy_itap
[|Vatetion
L5 | S
syhnergy_main [
c
utils u
A7 4800
f‘k (O Buffer
. F
Input procesing ‘ 1o wh 1230
¥ 12444 ¥ {G h] 3]
- enginzs
User ingdt 4 466
T R R, []

© 2009 MITRE

Enterprise Applications Middleware Web/Client Server Applications
ASP/JSPNB/.NET

B ~:|r.F-1=.Ln-|rr1=. ORACLE ‘ S!EMBE-IT‘ %‘ E - . l_’li_FT-;i_';“_"-;;'_ ava'
e] YW page isports’ fava.sql.t’ B

e Lid piga loport.’ cam. castsattuare

—————————————————————— - ! castpubs. japbean.** W

I ymr "TUTET Li& Ft & B
| By
v LCAT] 1) . 13 . "
|j|f -------------------- - Services . I Pages'B P vl
- - - " -
| L i o

h 4

Appﬁcation Logic

~Java, C+4, ... |
= " ramexorks Siruts WG Spring _
: gy FLCATICN DIVISLGH
L @ I c mcit LR CVIFS),
icati onnector 'NOTHER, IT0LL.
egacy Aglp ications o | l_s...c ke
CICS:Monitor (Cobol) :"'" ****** I o
‘Tuxedo Monitor (C} LS B -
som: ;'f_ﬁ*_ci&_ DVISIK, . "
s o Data Management Layer

'l *'m o YT0LL
m!

|

I r

Q EJB ¢ Hibernate -Jbatis
r 3 ‘- 3 ': :
[OFT MEI

(FROCRAM-ID, Bﬂiﬁh . .: CREATE FROCEDURE dbo.EmployeesByitat
COBOL INUTIR, ::._-
" e | ALGIN v
',t' t
! L g ¥ e.Title,
! Ficl Esployes o
--------------------------- I:”H|“} SELAETL ¢ O &
Database Rananiepcyroey Faplo:

Modern Mission-Critical Software Systems are Multi-Platform, Multi-Language, and Multi-Sourced

Source Code 4 Knowledge Base b ¢ Engines

* Oracle PL/SQL

» Sybase T-SQL

e SQL Server T-SQL

e [BM SQL/PSM

LA

® C++

e ProC

* Cobol

* CICS

» Visual Basic

® OracleForms

* Power Builder

o C#

* VB.Net /

e ASPNet

* Java

* JSP

e XML

e HTML

» Javascript

» VBScript

e PHP

e SAP

» Tibco

* Business Objects

e Universal Analyzer
for Other Languages

A 4 - Jk; J

© 2009 MITRE

806 SAMATE Reference Dataset
[« » | |£] 7 http://samate.nist.gov/SRD/ O B(Q- Google ©

[l AFC Home MIl Home Searchv Map/Ph/Weather/Travelv Bob's Bookmarksvy CVEnOVAL¥ OVAL shared SPAMmngtv bl

= slgnin register |

-Search...

Software Assurance Metrics and Tool Evaluation

N lsr Draft Special Publication 500-268

SAD Home View/Download Search/Download More Downloads Submit Test

. Source Code Security Analysis Tool
Welcome to the NIST SAMATE Reference Dataset Proje Functional Specification Version 1.0
The purpose of the SAMATE Reference Dataset (SRD) is to provide users, researchers,
set of known security flaws. This will allow end users to evaluate tools and tool d
designs, source code, binaries, etc., i.e. from all the phases of the software life cycl
{written to test or generated), and “academic™ (from students) test cases. This daf
known bugs and vulnerabilities. The dataset intends to encompass a wide variet
compilers. The dataset is anticipated to become a large-scale effort, gathering test ci
h , includi ls, : i l f . Softw
about the SRD, including goals, structure, test suite selection, etc Information Technology Laboratory (ITL), _—
Browse, download, and ch the SRD Diagnostics and Conformance Testing Division

Anyone can browse or search test cases and download selected cases. Please click 29 January, 2007
selected or all test cases. To find specific test cases, please click here.

How to submit test cases

Michasl Kass
Michael Koo

Savonal irsinte of Sueeclaecs and Techrology
ricempton Technongy Lasorasey
Belwiace Diagnoitel and Corformants Teasng Dadiicn

© 2009 MITRE

challengers leaders
4 N
4
© oFortify Software
E c
overitye
% Parasoft | B
WK ».0unce Labs.(IBM) |
o) I"Im':""“"'r"?'rk'.__‘HF’(SPI Dynamics)
> o|BM (Watchfire)
% oMicrosoft eVeracode
oCompuware
\. J
niche players visionaries
N | completeness of vision —p~
As of February 2009

Source: Gartner

Gartner Magic Quadrant
for
Static Application
Security Testing
Tools

Plus Some Other
Important Players...

Cenzic
proServices
Polyspace
Security Innovation
AppSIC Initiative
KDManalytics
SureLogic
Programming Research Inc
Armorize
Compuware
SofCheck
GrammaTech
CORE Security

© 2009 MITRE

CWE Compatibility & Effectiveness Program

(launched Feb 2007)

ana CWE - CWE Compatibility

'-1 - & f‘fI'mp:.'.'m.mI:m.wfcnmpl:lblt.'-ndﬂ.hlml

@n E Common Weakness Enumeration

© A community-developed dictionary of common software weaknesses

[l AFC Hame Ml Homs Ml-w Bap/Ph/Weather (Travel * Bob's Bookmarki v CVIROVAL» OVAL ihared SPAMmngls Lﬁﬂum

C'.‘E Coogle "]‘

CWE Compatibility

Saction Contents
Compatibility

SECURITY DATABASE (DM Analutics VERACODE FORTIFY

Qur Reason s Security

5 OFTWARE

technologies ~ SecurityReason SkillBrid
5 ¢ coverity

2
ioowortc FIPARASOFT" [

.0

SOfChBGI{ EE5E
LE“AM e E WatCHIIRe

heckm X

cigital [Jﬂ"
= PROA 11110 IR LDRA '

51.5?-'!;,[(]

CODENOMICON clefensics

0 CENZIC @ GRAMMATECH o - (ISC)2

_-. OUNCE LABS

Orgamzailz ions Partlc.lpatmg

All organizations participating in the CWE
Compatibility and Effectiveness Program are TOTALS

Compatible Products and Services and those
with Declarations to Be CWE-Compatible.

Products are listed alphabetically by organization name:

listed below, including those with CWE- Organizations Participating: 28
i i Products & Services: 47

cwe.mltre.org/compatlble/

© 2009 MITRE

Fortlfy Main User Interface

L] Ta
e g mm e

= ¢ Eclupse” Look & Feel

[.-l.-i-. Bl e Lt Fpaaw

Flaw List
w/menus to
“slice and dice
the data

"

File &
Source Code Pane Directory

Pane

Stack trace
variables,
values, call
trace.

Analysis mitigation suggestions, explanation
of the flaw, mapping to CWE and some
mappings to DISA Severity Codes

o

92009 MITRE

B S s - ‘h-l----l
i

g wwaay * WEMTT ¢ PR el _sveves S FIEM e sees ¢
ey 8 Y el peRaasad ¢ 'Y 8 puarsswd w T %
i~ . :.'lﬂi--lh. P riagl mmeat g
B " - I-FI]
& Lyteme-m beyey - P 1 W oaream it W ASEEE At S aeae f E ol e 8T e
WL B e = W] L Pase i led VL STRL TN I T,
o D3 Ve Mgt Wttt P i - B | ¥} .t g T T
®) Pue Coviten Legtan e fodt - B /1) i
W WA e - B o immesite = emil) o0 wessEe w0 T Bews))
o Banlows pon’ B Tl bemwe i
- BT pa’) Al b et . Paws s Tt Brsalies 4 o oot sles alasa * jeosits puolesales s
W Bl s mat B WA b T o nl Bl sl | Boladogeet o) Gl Lol wn JLeTml a0 @ 0 LS,
- P el iid b at e LT
-m““ il 3 e I
& O Lge pee W B0 benvee)
._—‘nw I ks oo hm b smae | i b abew ey wneeiel
& g Lt BA PR atys s D W (et getion) = §)
o L etV A TR Ry e - B 7 1 i
& Vetes i bmiesmet W Sl b e W8 Bahe pwre Tiie w1 dete A s pgl m)ecesd gea)
- e s s i Rk B e ' B e s Bs g e 8 e s—
& Temiettdes ma L s b e | T T L T T Ty ——
.“ﬂ‘lﬁ“‘ﬂ '
o bt e W bt By me— % T Welal = * T AT wisi_legs TalETY |
. rn a3 B b py e s e :
B e TSR W B e S e

= '1' ' e | Pkl | wills

e e
"tt"{*‘ e J"-s \ '

5 .-m" rgp._{'*‘z;‘ m;w, "‘r%

P SR BN Ss b = - T HW'W W 1y - IW!WIMWL

-m-‘ e —— e o R R i
i g e g S P P e ton " ow

e e i by vy gs &

LEIE B Ty R S

@ 1B meas W R Feee g L —
Tup e L gy st 1 ge Fagoge | et o
Y . ET] o .
- oy Y
Y- Wi o= L

@.\;— y - |g, http:fflocalhost:13180/PortfolioManager/ actionjdashboard-expanded. do v| || X | Bz

File Edit ‘iew Faworites Tools Help
: Links | Communicator \Web Access @ | Customize Links @& | Free Hotmail @ | Mbridge @ | MITHome @@ | MITRE Help Desk @& | Outlook Web Access @& | Remote Access »

Wk l{éOunce Portfolio Manager] ‘ ﬁ - B - - |:=F Page - _PJ- Toals -

A [B) (>

OUNCE %\ 5% | OUNCE PORTFOLIO MANAGER™

! Ounce Security Analyst

File Edit Scan Tools Admin Miew Perspective Help

B[] configuration Triage | Anal\:sg-‘ CE2 @ W T - Corfiguration:| defaul v
Dashboard - s @_ — = s 3 =
ZF Findings &3 | F £ - QF A5ME O || ¥ Finding Detail 2 | O
TDF} Vulnera Showing All Findings || '~ Details ~
& 3¢ Findings (5,366) A Ditech #
® Q% AppDOS (7) — - = Context: out . javax.serviet. jsp. JspMriter. print { searchediame
Appﬁ T let 3 aut o
F.: @ ADDDOS_'CDHHECUDHCIU_SE ¢ = javax.serviet. jsp, JspWriter, prink aut | javax.serviet.jsp, Jsp\Writer.pri.. i S Sitatof: 2
% Authertication. Credentials. 7| | @@ ja.0 serviet, jsp. JspWriter print out . javar.servlet jso. Jspiiiriter.pri. . Cie wulnerability Type: | crosssitescripting ¥
@ HR-401K & CrossSheScripting (421) _||B8 javax.servlet.jsp. JspWriter, printin out | javax.serviet.jsp. JspWriter.pri... Ciiwe 5 - |H' h |
] CrossSiteScripting. Reflectec : % _ * i ¥ % EvEriy ig |
i - _ b T Al = java. servlet. jsp. JspWriter . prink aut . javax.serviet.jsp. JspWriter.pri... Crive
@ ryptography. Insecuredlgo ;
@ WireTrans X Cr:EtugraEh: PuurEntrUpgy TS javax.serviet.jsp. JspWWriter printin out | javax.serviet jsp, JspWWriter.pri.., Ciiwe Bundle: |<“°“'3> *’l
i 3 k== javax.servlet.jsp. JspWriter, prink aut | javax.serviet.jsp. JspWriter.pri... Ciiwe
@ workspact @ ErrarHandling.RevealDetails Re, 2
B i 7 z i 5 = 1 3 - porting
£ Q% ErrarHanding RevealDetails 5 javax.serviet.jsp. JspWriter printin out | javax.serviet,jsp, JspWriter.pri,.. Ciiwe
@ WebGoat- ® e Info [3,822) v TS javax.servlet.jsp. Jspwriter.print out . javar.servlet. jsp. Jspiiter pri. . Ciie o Lines Befare: |
e . L2 | & L 2 1l lines after: i . Ao
49 | AP-AR S : : =
martlrace L L LEMEL =3
T SmartT b 4 | P BE-H YYD Q =B | Remed m|
- — A P
@ Transactic | =]{I] ‘WebGoat. lessons, GoatHillsFinancial, Searchstaff WebGoat lessons.GoatHillsFinancial SearchStaff_jsp crosssitescripting
= 3 ﬂ}' javax.servlet, ServietRequest .getParameter Info
£ CEM a ﬂ} javax.servlet.jsp, JspWriter. print _ispService @\lnrk caniitieaticie
— A : ;o
i - CWE: 79 - Cross-site scripting (255
(1) | OnlineBanl / ¥ pting (X35)
L " 2
All Agg”catigr ¢ 5 javax.servlet.ServletRequest javax.servlet.jsp.JspWriter s
tne | Context getParameter prnt Common Weakness Enumeration
7 searchedMame = request . java serviet Sery A A Community-Developed Dictionary of Software Weakness Types
c 11 out . javax.servlet.jsp. Jsp\Writer print { search
My Portfolio
>
Searchstaff.jsp &2 =i X
s if (searchedName I= null) z CWE-79: Failure to Preserve Web Page Structur
: Full Dictionary View ' = - . .
=] { -
10 5y Development View (cross SIte Scrl ptl ng)
Done @11 Employee <i=searchedName$> not found. = Ressachivicn
| 1 <5 Eeports Failure to Preserve Web Page Structure ('Cross-site
13 } | Avout | Scripting')
5 Sources
{ 1% T g 2 2 Weakness ID: 79 (Wsskness Bass) Status: D
5 <form id="forml" nawe="forml" method="post" action="<%=web3essio Process .
16 <label>Name m || Docum=nts ¥ Description
ii7 <input class="lesson text db" type="text" name="<3=GoatHills Summa
= == —'m sSummary
18 </ label> || Related Activities o ' 3
10 B s The software does not sufficiently validate, filter, escape, and encode user-
- SRR oo S e O SRR S controllable input before it is placed in output that is used as a web paage tha ¥
< * 4 | >

aa [

& Klocwork for CIC++ -

Lo =

Ld~™ =

g =l % =

B2 sre A
B tooks
(R T
® = windowes-NT
L= dib

| cvsignore

[project

|2 acinclude m4

| achocal.me

[0 auTHORS

configure.in
COPYIMG
COPYING LIEB
=) CvE.Sped

|5 cvs.specin
5] cvs-Format.el
1= ovsnt.dep

ik Liight Herveew

client.c -

Eclipse SDK
File Edit MNavigate Search Project Bun Window Help
b Q- P i lE

Bl gl

=1

= O || [klocwork Details 51

éﬂé" w B’

Hiocwork J{'J'S-'E-?_l’

77 | % Kocwork fer ... |

BO -0

2165 /* Save this file to retrieve later. A El"u?;duﬁpmm' *‘:mlﬂﬂb'lﬂdt-mbfﬂmﬁt emory:
5 n
2 1.66 ialled_patches = :T:a:l ';J x:e:lloc el bexct' at line 2066 can be lost at e 2179, More
2167 ailed_pactches_col rforraation
5 r * I FACHAGE haokls
~ -
o _ 7 mizecs (char 7))} 5 @ Ciiedpse_3 Zworkspacelovs_demotsrelclent ci217
2169 failed patchez[failed patches_count] @ chent.c1606: data- mcontents==UPDATE_ENTRIE ' m .!:l ' !|
e] 4 . = - |
21_0 ++failed pacches count: @ chank.c11849: data->existpm=UPDATE_ENTRIES_
217
P . @ dhent.c:2027: data-=conkents==UPDATE_ENTRIE
it:i stored_checkaum_valid = 0: @ chenk,c: 2031 : data->conkents==UPDATE _ENTRIE
a 1_'_4 + d i . & chent.c:2066: Ircs_change_text{short_pathname &
. free (mode_string)s 5 clont.c12066: Dymamic ey stred i potcred] | BaseTabie CacnedData [Cacheos
s : N & <library>: in res_change_text : ! :
: L.:D free (scratch_encries); @ chent.ci2116: stored_checksurmn_valides: ipatch_fi
s free [emtries_line); & chent.c:2163: patch_faled is true
N l:a 0 chent.c:2179: Dynamic memary stored in jpatched
GPRE] return:
2180 }
2181
2laz i
2183 int status = change mode (filename, r
2184 if (=tatus != 0) w — -~ = —————
F3 ‘_ G_u:;y - @ Itk {Hocworks if A3TS85A 5501 5CEFBEDERSSE0ADGE IR I hctory]D _bEUDZ 163 V 4 X
| Kloowork Findings £ Klocwork Log Cansale Be ot Yew Favortes Took Heb
WVisible 226 of 226 kems. Grouped by None, Sorted by Severity, then by Description W & |EMWM - o v [Page =
Diescription Resource Loca, .I
& SoS BEEL i b o aareullel - ' anenl =1 .
=21% Klocwork .-"ﬂng‘ﬂr’ :::jr:
review
= = projc it toe e ok Hep

Praject st LI teum Managumeet Souste Crass-Relerencn
P

e ki,
et win_al_jousces

o ¥ S€3ICH by:

el

¥Swarchby: | Criterle Dol Seeed Sevens [Fumrored® 2] mismpen] miniss
watr T Portim Binpa reed TN
Beverity ol [ETETIEE Louosnguie marming | duggertion | Siphe Boverw 1o ol Epmpsnastn.|
Status [CERITY Bpnern | tven o Provten [Fie o= Povt Bulenre | Fin = Loter Bebugtn (DeteeFiver o | Cutagennie. |
3 o | clwir Changes | —Ssmee)
Feport | =] Trending by Severity e [Sinckbar =] PoF | cov | P |

Issue Count Summarized by Severity

Count of Deflects

EELEEEE LR EEER:

i WS | Ve Gt 10 buda 888 5_76_Geiwbar_3007_D0_01_03AR_8_0_03 Hessmbas_3007_DO_01_E

State

Criteria | Issue 1D

Saved Scopam: :"'U.‘lllv.d' b
[Mew | Eumirg | NetinScope | Foed | Recured NIRRT | TICHE

|l compaasras
f ol £otagaras

Dester 2007 00,012
et 2007 00,105
et 007 00,080
et 2007 00,002
et 000 18 0

o _3007_00_01_(2

e _2007 00, 00_(2

arber 2007 00, 0808

w007 00, 042

somrrber 2007 00, 0002
e 2007 00, 01_(0

Jaruy 7208 00,0105

Taruey 008 00,040

[12 retacnt ahralee spsrsrimes bhetbis. s

seslha il Ay

PO e sevas [Unpecia tvestigane [Warin Susgesion Tsa Revte]
PO <o o oot [Fo] o Nt ftanse | Focin v Refsse [)

Report

1=

I | ‘I'rendihq by Category

l ssmpanens
1% items: Coding Style Concurrancy,Mamery Manag
™ Array Inda Que of Baunds, Unvalidated Usar Ingut Can
Mull Tarminatec String.Usa of Freed Memory on Return

View [pia v|

(oe] (V] [P

i Coding Style

[Memory Management Problems
E‘ Null Pointer Dereference

ﬁ Resource handling

B use of Uninitialized Data

“Isrer

& Local inranet)

Vulnerability Severity Distribution 2D RPE

Vulnerability Type Distribution Vulnerability Depth Distribution
a0 5 — —
B0 ™ Avg. Depth 3.32 5.
70
T 0 4 |
= =
Z 504 €y
C 40 ©
E (%]
saif | 21 |
20 4 i | = . |
ol 1A I'Ad
- 'uuu 1 0
0 5 10 15 10 5 0
Depth Depth

&l Cross-Site Scripting (CWE 79)
_| saL injection (CWE 89)

M Directly :
‘ Vulnerabilitie] * T L

A
_I Resource Injection (CWE 99) B R T e s B L e i
& HrTP Response Splitting (CWE 113) I Vuinerabilitie: gy AL TR et® bkt s I T RCERAT LR SR D ILO0 FEDVIER RS ot v B
£ command Injection (CWE 77) an
. Hard-: l P rd (:1 » 'E 259) u::l: AR TRER T R LRE STTRTL G RS TR P | S § LR RAaE. S RS [TE IR S S LN AR ML RREE 8 L
Ll XPath Injection (CWE 91) s SMI-"I" harder=t onllasariar=8® criipsbisg="0" slass="yshiontns® alig-senies®s
. Information Leak of S‘_fstem Data {CWE 49?} n “:E: ::m:»:: = Doamw (RIS SANBEEL PO R CARERITE 5 PUELASUisEEY VhUERER) SRR @ |fl|_pun| (T .
Vulnerability List o & Scan Result 2 0 Report| & console
i X e e AT = =]
‘Vulner Type v : ublog - 11:46:34 AM
W DefaultlessonActionjava Information Leak of System Data (C i R . Vunersbilty Label
. . it il o B add_commento.asp:179 Cross-Site Scripting (CWE 79) Haot
W EdtProfiejsp Cross-Site Scriping (CWE 79) . 1= & add_commento.asp:183 Cross-Site Scripting (CWE 79) Hot
Wil kL P IrT I
@ EdiProtiejsp Cross-Site Scripting (CWE 79) R & ¥ add_commento.asp: 183 Cross-Site Scripting (CWE 79) Hot
i # ‘ add_commento.asp:183 Cross-Site Scripting (CWE 79) Hot
W EditProfiie jsp Cross-Site Scripting (CWE 79) s cisernmenn | 5 W add_blog.aspi176 Cross-Site Scripting (CWE 79) Hot
y e ~ i @ W calendario.asp:56 Cross-Site Scripting (CWE 79) Hot
Vulnerabilities Coverage e et .
Cross-Site Scripting (CWE 79) o E _: Emh'mfﬁ? gw-sne im e) e
SOL Injection (CWE 89) aiad e I cah“u:la‘il:lasplf.ﬁ oss=Site m {C“E ?g:l Hot
E_il:rn’;m?nc_l Inj;a-ctior:g EWE 77) Seubly U e -I ® @ add_commento.asp:179 Cross-Site Scripting (CWE 79) Hot
ile Inclusion (CWE > 4 2 :
Resource Injection (CWE 99) o shmeeeme el g @ add_commento.asp:179 Cross-Site Scripting (CWE 79) Hot:
Information Leak of System Data (CWE 497) e ® @ add_commento.asp:179 Cross-Site Scripting (CWE 79) Hot
Hard-Coded Password (CWE 259) e e E * add_commento.asp:183 Cross-Site Scripting (CWE 79) Hat
Open Redirect (CWE 601) = >
XPath Injection (CWE 91) hrmiena | Biw Gemcel 5 G blog_preview.asp:49 Cross-Site Scripting (CWE 79) Hot
APl Abuse (CWE 227) - = W blog_preview.asp:63 Cross-Site Scripting (CWE 79) Hot
HTTP Response Splitting (CWE 113) b oo] OebcDbes-d4g8-fB82d-bed0-dz Hot
LDAP Injection (CWE 90) - P
Reflection Injection . :-ll--:’-: m [# * configura.asp:146 Cross-Site Scripting (CWE 79) Hot
Tag Injection -+ m_;“ : .
Y OIBREEEE 2 @ @ configraasp:iso Cross-Site Sripting (CWE79) Hot

Sample Warning

Buffer Overrun

Source
Problem Line Source
CleygwinihomelMark Zarinsicodesonarexamplesignuchess-5.07\srcllexpan.c
Enter return_append_str
1766 char *return append str(char *dest, const char *s) {
1767 /¥ Append text 3 to dest, and return new result., ¥/
1768 char *newloc;
1769 size t newlen;
1770 /% This doesn't have buffer overflow vulnerabilities, because
1771 we always allocate for enough space before appending. */
1772 if ('dest) {
true 1773 newloc = (char *) malloc(strlen(s))+l:
strlenis) = 1774 strcpy(newloc, 8); /% Buffer Overrun */
bytes afterinewloc)
-1
+ Preconditions
+ Postconditions
= ——» | B|U|F|F|E|R|W strlen(s) ==

malloc ——

newloc AT

Blu|F|F|E|R|W0!

bytes_after(newloc) ==
© 2009 MITRE

Example Buffer Overflow

Package:

File(Line): ExternalloModel/ExternalloPkg/.../EioJreapDecoder.cpp:2203

Function: memcpy(m_CrcBuffer, inputDB->getBufferWithOffset(), bytesNeeded);
2159
2200 + W EioJreapDecoder.cpp:403 - Caller: decodeMGH
2201 ff Copy data straight into the crc buffer. Calculation should bf|i . Brffer Size: 2
2202 // &ny swap | ® EioJreapDecoder.cpp: 403 - Caller: decodeMGH
2203 memcpy (m CrcBuffer, inputDBE->getBufferWithCffsetc (), bytesHeeded) jBS Buffer Siza: 2
2204 offset = JREAF MGH CRC _WORD OFFSET * JREAP WORD SIZE; () BolreapDecoder. cop: 2903 - memepy()
2205 ff zero out the CRC to make the calculation V. Buffer Size: 0207 bytes
2206 m CrcBuffer[offsec) =0 Wite Length: 9216 bytes
2207 m CreBuffer[offgec+l] =0 L byteshieeded: 9216
2208
2208 crcCalec = EiolUtilities::calculateCRC(m CrcBuffer, bytesleeded) ;
2310 - Buffer Overflow (Input Validation and
o) o) Representation, buffer)
2211 Jf Dffset is already be pointing at the CRC
2212 USHORT crcRov = EioUtilities::createlgBitInt(pBuffloffset+1], pl The program writes outside the bounds of allocated
213 if(creCale '= croRev) memaory, which ::oL_JId ::orrup_t Flam, crash the program, or
—_ K lead to the execution of malidous code.
£ L L

The memcpy() call copies bytesNeeded amount of data into m_CrcBuffer

* m_CrcBuffer is MAX_CRC_BUFFER_SIZE, which is 9207 bytes
e bytesNeeded = (numJreapWords * NUM_BYTES_IN_JREAP_WORD) + NUM_BYTES_IN_HIGH
* These are: (1024 * (72/8)) + 9

9216 hytes of input data is written into a buffer that can hold 9207 bytes (overflow)

© 2009 MITRE

Example Buffer Overflow: Off-by-One

Package: CrbsModel->CrbsPkg->ConfigurationPkg->DataReductionRulesPkg

187[TRUEFALSE { Fileline: : : ; :
- s File:line: src\CrbsModel\CrbsPkg\ConfigurationPkg\DataReductionRulesPkg:204 -One (Input Validation
- FATL g . : : . tation, buff
=g -t = Function: few, including the obvious strcat(buffer, temp) ntation, buffer)
190 CINT NUF ¥ e BPETOTrETReEeRe_ o in _
o - _ . e, CrbsSpedialfeduction. cpp writes one location past
151 CUINT NUM BITS = FIELD SIZE * NUM_FIELDS: ""nuu-.n. the bounds of buffer on line 204, which could
132 CHRR buffer[NUM BITS]: ""--.._cnrruptdam, cause the program to crash, or lead
193 convertToBinary (codedValue, buffer): 4-'“'““'“""""---u-..."-u ﬁie‘}(ﬁ&lﬁun ef malicious cods.
B LT - -
154 UINT =ize = strlen(buffer): ol --."..."“::. . -
135 .
L i B .--'-.....--......|-||.----l--lI----Illl-lI-|._|..--.
196 if (size < NUM BITS) { _.’.---;L*"""“'" RO
137 CHLE tenp[NUM BITS]: F RN B sanse®?
PR - _ L W -
198 mencpy (temp, buffer, size); "'"_"_.é--" ""_"..-.-- "'____. st *’l
185 T buaff nary : ’ . A - -
qjj strcpy (buffer, "0T) ._.--"‘" _,..n?”--'f'l CrbsSpecialfeduction, cpp: 122 - Buffer buffer Dedar&_:l
2 L a® on® . .]
. . et w* ¢{} CrbsSpedalReduction. cpp: 204 - strcat()
201 while (strlenibuffer} + size « NUM BITS) e 3 '""_.f' P ;,
202 strcat (buffer, "0"): ot ! ¥
S _an*® 4 o liite Length: 21 bytes >
Rl F :
204 strcat (buffer, temp):

a. “Magic numbers” declared locally & buffer declared on the stack as 5 * 4 (= 20) char bytes

b. Buffer is filled with values via convertToBinary call (overflow potential?)

C. Performance expensive code -> duplicates sprintf() call poorly
. Duplicates the buffer into a temp buffer

. Overwrites the original buffer with an expensive strcpy() call -> duplicates simple assignments

. Repeatedly recalculates the length of the buffer, - strlen() expensive
while appending a ‘0’ character

. Blindly appends the original content to the end (overflow) —> appends original content

© 2009 MITRE

Example Buffer Overflow: Signed

Package: ExternallOPkg->EioJreapPkg

File(Line): ExternalloModel/.../EioJreapPkg/EioJreapController.cpp:1358

1343 Function: memcpy(m_OwnUniticmBufferData, getMbufP().getMbufPtr(), m_OwnUniticmSize);
344N0OID Eiod
1345({ il Comparison (Input
134§ INT gueueIndex: Validation and Representation, buffer)
347
The progr & ned comparison to check a
g getSearchCriteriaR() .clearBlIBttr () ; ...---"""L-"a'ﬂ 9-?'1" ﬁfﬁeﬁﬁﬂ&ynmgned This couid

getSearchCriteriaR() .setCriteriaVal (EIO_CRITERIA_ICM TYPE, JGM=" «r?PY MCP LINE, Lt e nwg?ramtownteuutﬁ'ie the bounds of

gueuelndex = m FwdRovMgr-»>searchQueue [EgetSearcmltﬁflaR[] - EloF:-JdRch-;gg" Cilgﬁgr;nnfm;rréaghémﬂfgﬂgeﬁ&ﬁt&aghS-Daj:
T

k]

| | | | |
R R T R TR TS T L T
[f =Y
e

51 1f|:q.1e.1e1ndex == 0} "'....ﬂ ‘_.' ‘.+' code, H
1352 ¢ ST o o .
1353 m FwdRovMgr- >1'E::E:Lvea Drﬂtﬂex(get}ﬂ:afP (), gueuelndex, b 1qE‘!-JdRch-I|;I‘ QU i :
1354 m_OwnUnitLinkData3ige@ = getMbufP().getCriteria(EI0_CRIFERIA_LIWADATA 3| | |, CodreapControler.cpp:1356 §Signed Comparisan
1355 m OwnUnitIcmSize = getMbufP () .getCriteria (EID GEEITERIA.:ICH SIZE); :""*{} Sl 135":' memcpy ()
1356 if (m OwnUnitIcmSize <= EIO JREAP PPLI DATA SIZE) oc - %‘&5*‘? Je5bytes &
1357 : '. ------ Wite Length: (very lBrge ..Ffa.a't.re_,f Aytes
1358 memcpy (m CwniinitIcmBufferData, getMbufP () .getMMbufPrr(), m COwnlUnitclc ::

. The m_OwnUniticmSize value is looked up via getMbufP().getCtiteria(EIO_CRITERIA_ICM_SIZE) ..'"
. If the (unsigned integer) m_OwnUniticmSize is less than, or equal to (integer), EIO_JREAP_PPLI_DATA_SIZE

. Then copy that m_OwnUniticmSize number of bytes from the pointer returned by the getMbufP().getMbufPtr() call into the
m_OwnUniticmBufferData memory location.

. Large, positive integer values will flip the highest bit. A signed comparison would consider that value to be negative.

. Extremely large values to slip past the protective “if” statement and on to memcpy() (overflow)

© 2009 MITRE

AD Governance Dashboard

Quick Access Home page

CAST AD Govemance Dashboard let you measure, monitor and control application risk factors by asszessing their source code for quality risks and technical
structure and size,
Application code quality assessment results are presented using color-coded status (Red/Unacceptable, Orangef/To Justify, Yellow/Accaptable, and
Green/Excellent) and & 1-to-4 dedmal grade (the higher the score, the better),

€3 Focus on Application Legacy HR application - part of HR System - for Apr "06 snapshot

#ssessment of the selected component. Click on the hyperlink above to zoom out this component. Click on the -Histary- hypetlink to compare values on all available

snapshots. History

Assessment of the guality and quantity of the selectad component.

¥ Quality of Application Legacy HR application in Apr '06 snapshot

Assassmant of the quality of the selected componant. Click an the hyparlinks balaw to
saa tha application risk factors for tha currant contaxt - componant and snapshot -,

Transferability 2.09 Tiansteiability
Changeability | 3 47
Robustness 3.13 =L T Changeability
Performance | 3.5
secuity 3.25

Pedaimance Rabustnes
Maintainability (SEI)| 3,49 | 343

futurs,

SEI Maintainability assessas tha cost and difficulty/aasa to maintain an application In tha

¥ Rule Compliance of Application Legacy HR application in
Apr '06 snapshot

hggagsrnant of tha carmpliance ta rulas for the salacted cormponant,

Click on tha kyparlinks balaw to dilldawn on rule cormplianca

Infarrmation for the currant contaxt = companant and snapshot =
Pragramming Practices

4

Architectural

Docuimertation Desigh

el -

T

saseD 1sa] ener

TLLLLLERELL LRI L

saseD 1sa3 D

C/C++ “Breadth” Test Case Java “Breadth” Test Case

Coverage Coverage

No Tools
0% = No Tools

_ Coverity 40%
1%

. Six Tools

- Fortify 0% 7|

One Tool 3% |‘

12%
GrammaTech Five Tools
Five Tools? . T o P~
7%
- Koowork o oo
. Ounce Labs
Two Tools 29%
Four Tools "%
15%
Three Tools Three Tools
13% 18%

Two Tools
15%

One Tool

14%

. Klocwark
1%
Ounce Labs

&yt
\PMD

2%

© 2009 MITRE

Indvidual CAPEC Dictionary Definition (Release 1.2)
Blind SQL Injection

Attack Pattern 7/ Pattern Abstraction: Detailed
1D

Typical High

Severity

Description Summary

Blind SQL Injection results from an insufficient mitigation for SQL Injection. Although suppressing database
error messages are considered best practice, the suppression alone is not sufficient to prevent SQL
Imjection. Blind SQL Injection is a form of SQL Injection that overcomes the lack of error messages. Without
the error messages that facilitate SQL Imjection, the attacker constructs input stnings that probe the target
through simple Boolean SQL expressions. The attacker can determine if the syntax and structure of the
injection was successful based on whether the query was executed or not. Applied iteratively, the attacker
determines how and where the target is vulnerable to SQL Injection.

In order to achieve this using Blind SQL Injection, an attacker:

For example, an attacker may try entening something like "username’ AND 1=1; --" in an input field. If
the result I1s the same as when the attacker entered "username” in the field, then the attacker knows that
the application 15 vulnerable to SQL Injection. The attacker can then ask yes/no questions from the
database server to extract information from it. For example, the attacker can extract table names from a
database using the following types of quenes:

"username’ AND ascii{lower(substring({SELECT TOP 1 name FROM sysobjects WHERE xtype='U"), 1, 1)))
> 108",

If the above guery executes properly, then the attacker knows that the first character in a table name
in the database is a letter between m and z. If it doesn't, then the attacker knows that the character must
be between a and | (assuming of course that table names only contain alphabetic characters). By
performing a binary search on all character positions, the attacker can determine all table names in the
database. Subsequently, the attacker may execute an actual attack and send something like:

"username’; DROP TABLE trades; --

omplete CAPEC Entry Information

ey G e wei
-
[
. o =
e wn—— [et
o asa e =
e

Stub’s Information

L i e R
=] e b =

. it

* mmm——r o e, i R T

e

i [I‘iiiil

I‘Hiil

i b A B . R W P L U AL B U
e e B e e e m e bt T
A e T e i 7 et i i e i

T R S T e T

]

SR

]

1 A B S N 1 T TR B T i B s

e ame P a5 b s P e P et
g B e 7 B S e T S S I Bt
s B e R i £ s L P

. A N P T | P £ S A R

W e ‘meer e e
E [T,
R e bt

© 2009 MITRE

CAPEC Current Content (12 Major Categories)
1000 - Mechanism of Attack

Data Leakage Attacks - (118)
Resource Depletion - (119)

Injection (Injecting Control Plane content through the Data Plane) -
(152)

Spoofing - (156)

Time and State Attacks - (172)
Abuse of Functionality - (210)
Probabilistic Techniques - (223)
Exploitation of Authentication - (225)
Exploitation of Privilege/Trust - (232)
Data Structure Attacks - (255)
Resource Manipulation - (262)
Network Reconnaissance - (286)

© 2009 MITRE

CAPEC Current Content (Which Expand to...)

1000 - Mechanism of Attack Exploitation of Authentication - (225)
Data Leakage Attacks - (118) Exploitation of Session Variables, Resource IDs and other Trusted
Data Excavation Attacks - (116) Credentials - (21)
Data Interception Attacks - (117) Authentication Abuse - (114)
Resource Depletion - (119) Authentication Bypass - (115)
Violating Implicit Assumptions Regarding XML Content (aka XML Denial Exploitation of Privilege/Trust - (232)
of Service (XDoS)) - (82) Privilege Escalation - (233)
Resource Depletion through Flooding - (125) Exploiting Trust in Client (aka Make the Client Invisible) - (22)
Resource Depletion through Allocation - (130) Hijacking a Privileged Thread of Execution - (30)
Resource Depletion through Leak - (131) Subvert Code-signing Facilities - (68)
Denial of Service through Resource Depletion - (227) Target Programs with Elevated Privileges - (69)
Injection (Injecting Control Plane content through the Data Plane) - (152) Exploitation of Authorization - (122)
Remote Code Inclusion - (253) Hijacking a privileged process - (234)
Analog In-band Switching Signals (aka Blue Boxing) - (5) Data Structure Attacks - (255)
SQL Injection - (66) Accessing/Intercepting/Modifying HTTP Cookies - (31)
Email Injection - (134) Buffer Attacks - (123)
Format String Injection - (135) Attack through Shared Data - (124)
LDAP Injection - (136) Integer Attacks - (128)
Parameter Injection - (137) Pointer Attack - (129)
Reflection Injection - (138) Resource Manipulation - (262)
Code Inclusion - (175) Accessing/Intercepting/Modifying HTTP Cookies - (31)
Resource Injection - (240) Input Data Manipulation - (153)
Script Injection - (242) Resource Location Attacks - (154)
Command Injection - (248) Infrastructure Manipulation - (161)
Character Injection - (249) File Manipulation - (165)
XML Injection - (250) Variable Manipulation - (171)
DTD Injection in a SOAP Message - (254) Configuration/Environment manipulation - (176)
Spoofing - (156) Abuse of transaction data strutcture - (257)
Content Spoofing - (148) Registry Manipulation - (269)
Identity Spoofing (Impersonation) - (151) Schema Poisoning - (271)
Action Spoofing - (173) Protocol Manipulation - (272)
Time and State Attacks - (172) Network Reconnaissance - (286)
Forced Deadlock - (25) ICMP Echo Request Ping - (285)
Leveraging Race Conditions - (26) TCP SYN Scan - (287)
Leveraging Time-of-Check and Time-of-Use (TOCTOU) Race Conditions - ICMP Echo Request Ping - (288)
(29) Infrastructure-based footprinting - (289)
Manipulating User State - (74) Enumerate Mail Exchange (MX) Records - (290)
Abuse of Functionality - (210) DNS Zone Transfers - (291)
Functionality Misuse - (212) Host Discovery - (292)
Abuse of Communication Channels - (216) Traceroute Route Enumeration - (293)
Forceful Browsing - (87) ICMP Address Mask Request - (294)
Passing Local Filenames to Functions That Expect a URL - (48) ICMP Timestamp Request - (295)
Probing an Application Through Targeting its Error Reporting - (54) ICMP Information Request - (296)
WSDL Scanning - (95) TCP ACK Ping - (297)
APl Abuse/Misuse - (113) UDP Ping - (298)
Try All Common Application Switches and Options - (133) TCP SYN Ping - (299)
Cache Poisoning - (141) Port Scanning - (300)
Software Integrity Attacks - (184) TCP Connect Scan - (301)
Directory Traversal - (213) TCP FIN scan - (302)
Analytic Attacks - (281) TCP Xmas Scan - (303)
Probabilistic Techniques - (223) TCP Null Scan - (304)
Fuzzing - (28) TCP ACK Scan - (305)
Manipulating Opaque Client-based Data Tokens - (39) TCP Window Scan - (306)
Brute Force - (112) TCP RPC Scan - (307)
Screen Temporary Files for Sensitive Information - (155) UDP Scan - (308)

© 2009 MITRE

CAPEC Current Content (305 Attacks...)

o>

:
=
=

~

-

| |II.F.IIIIIIIIII.|-|.. .m"“l-l-lll- II"III_IIIIIIIIIIIl .I.I--.III“I“

.III-IIII

IIIIIII.l-nI-I““III“ .I..

-;_-
]

I.- II.IIIIIIIIIII.IIII.-I IIIII..II.II-IIIIIIIII._II“IIIII.III-.III"III“II-. -I-.

.-IIIIIII IIIllIllIII L IIIII -Illlll-I“l““.-.

© 2009 MITRE

Cyber Threats Emerged Over Time

email propagation of malicious code

DDoS attacks

“stealth”/advanced scanning techniques

— binary encryption

widespread attacks using NNTP to distribute attack —————— increase in tailored
widespread attacks on DNS sé“f%@ﬁcated
infrastructure automated — command & control
obes/scans
executable code attacksp(ragainst browsers)
automated widespread AttaCk
GUl intruder tools ~ attacks .. i
, _ Sophistication
network mgmt. diagnostics—
diffuse
sniffers anti-forensic EXh#tes
home users targeted
distributed attack
. tools. . .
increase in wide-scale Trojan horse
distributi®Rindows-based remote
S . controllable Trojans (Back
hijacking sessions www attacks Orifice)
back doors
disabling audits .
, techniques to analyze code for
Internet social vulnerabilities without source
engineering attacks code
password widespread
Ki denial-of-
cracking service attacks
packet spoofing |__automated
probes/scans
exploiting known)
vulnerabilities burglaries
password
guessing

1980’s 1990’s 2000’s o DOIRE S

55

Threat Landscape

Cyber Threats

® Complex software and hardware have
many vulnerabilities

® IT supply

® Sophisti

increasin

Threat Actors Nation States

But the threat to
DoD systems is
from here

© 2009 MITRE

What Is Software Assurance (SwA)?

Information
Assurance Project Mgt

Software SOftwar
AcquisitionSSU rance

2\

Software
Engineering

Safety &
Test& Security Info Systems
Evaluation Security Eng

Software Assurance is not a separate new discipline
but rather it is an extension to each of the disciplines
Involved in a System’s Development

© 2009 MITRE

“Software Assurance”

(from http://en.wikipedia.org/wiki/Software_Assurance)

Software Assurance (SwA) is: “the level of confidence that software is
free from vulnerabillities, either intentionally designed into the software or
accidentally inserted at anytime during its lifecycle, and that the software
functions in the intended manner”

— Source: Committee on National Security Systems (CNSS) Instruction No. 4009, “National Information
Assurance Glossary”, Revised 2006 — http://www.cnss.gov/instructions.html

Alternate definitions:

[1] Software Assurance (SwA) addresses:
- Trustworthiness - No exploitable vulnerabilities exist, either maliciously or unintentionally inserted;
- Predictable Execution - Justifiable confidence that software, when executed, functions as intended;
- Conformance - Planned and systematic set of multi-disciplinary activities that ensure software processes and
products conform to requirements, standards/ procedures.
- Source: Department of Homeland Security “Build Security In” web portal — https://buildsecurityin.us-
cert.gov/portal

[2] Software Assurance (SwA) relates to "the level of confidence that software functions as intended and is free of vulnerabilities,
either intentionally or unintentionally designed or inserted as part of the software."
- Source: DoD Software Assurance Initiative, 13 September 2005 -
https://acc.dau.mil/CommunityBrowser.aspx?id=25749

[3] Software Assurance (SwA) — is “the planned and systematic set of activities that ensures that software processes and
products conform to requirements, standards, and procedures to help achieve:
- Trustworthiness - No exploitable vulnerabilities exist, either malicious or unintentionally origin, and
- Predictable Execution - Justifiable confidence that software, when executed, functions as intended.
- Source: National Institute for Standards and Technology (NIST) - http://samate.nist.gov

[4] Software Assurance - "Planned and systematic set of activities that ensures that software processes and products conform to
requirements, standards, and procedures. It includes the disciplines of Quality Assurance, Quality Engineering, Verification
and Validation, Nonconformance Reporting and Corrective Action, Safety Assurance, and Security Assurance and their
application during a software life cycle.”

- Source: NASA-STD-2201-93 "Software Assurance Standard”, 10 November 1992 -
http://satc.gsfc.nasa.gov/assure/astd.txt

[5] Software Assurance (SwA) is “justifiable trustworthiness in meeting established business and security objectives.”
- Source: Object Management Group (OMG) — http://adm.org/SoftwareAssurance.pdf and © 2009 MITRE

http://en.wikipedia.org/wiki/Software_Assurance
http://www.cnss.gov/instructions.html
https://buildsecurityin.us-cert.gov/portal
https://buildsecurityin.us-cert.gov/portal
https://acc.dau.mil/CommunityBrowser.aspx?id=25749
http://samate.nist.gov
http://satc.gsfc.nasa.gov/assure/astd.txt
http://adm.org/SoftwareAssurance.pdf
http://swa.omg.org/docs/softwareassurance.v3.pdf

A

A

A

U HOIHElaIldl Strengthen operational resiliency

DHS - Challenges in Software Assurance

Software vulnerabilities jeopardize infrastructure operations, business
operations & services, intellectual property, and consumer trust

Adversaries have capabilities to subvert the software supply chain:
O Lifecycle processes offer opportunities to insert malicious code and to
poorly design and build software which enables future exploitation
O Government and businesses rely on COTS products and commercial
developers using foreign and non-vetted domestic suppliers to meet
majority of system requirements
a Off-shoring magnifies risks and creates new threats to security,
business property and processes, and individuals’ privacy — requires
domestic strategies to mitigate those risks
Growing concern about inadequacies of suppliers’ capabilities to
build/deliver secure software — too few practitioners with requisite
knowledge and skills
O Current education & training provides too few practitioners with
requisite competencies in secure software engineering — enrollment
down in critical software-related degree programs
O Competition in higher-end skills is increasing — implications for
individuals, companies, & countries
O Concern about suppliers and practitioners not exercising “minimum
level of responsible practice”

Processes and technologies are required to build trust into software

=

grihtiiey

- Security

DoD Perspective on the
Software Assurance (SwA) Problem &5

% -
O STaTES

» Software is critical to the Global Information Grid, most weapons,
business and support systems
» DoD Perspective
—- Targeted attacks
- Attacks from Nation-state, terrorist, criminal, rogue developers
— Unique Assets - NSS/Weapons
- Types of Attacks
- Intentionally implanted logic (e.g., back doors, logic bombs,
spyware)
- Unintentional vulnerabilities maliciously exploited (e.g., poor
guality or fragile code)
— Ability to exploit vulnerabilities remotely
» Through software, the enemy may
— Steal or alter mission critical data
— Corrupt or deny the function of mission critical platforms

ISA presentation at ACM SCC 06, Dr. L. Wagoner, 31 Oct 2006 ©2009 MITRE

DoD OASD - Software Assurance is Critical*

Software is the core constituent of modern products and services — it
enables functionality and business operations
Dramatic increase in mission risk due to increasing:
- Software dependence and system interdependence (weakest
link syndrome)
- Software Size & Complexity (obscures intent and precludes
exhaustive test)
- Outsourcing and use of un-vetted software supply chain (COTS
& custom)
- Attack sophistication (easing exploitation)
- Reuse (unintended consequences increasing number of
vulnerable targets)
- Number of vulnerabilities & incidents with threats targeting
software
- Risk of Asymmetric Attack and Threats
Increasing awareness and concern

Software and the processes for acquiring and developing software
represent a material weakness

% [Source: Interim Report on “Software Assurance: Mitigating Software Risks in the DoD IT and National Security

Systems,” DoD OASD(NII) forwarded to Committee on National Security Systems (CNSS)), Oct 2004] ©2009 MITRE

Summary of the SwA Problem

Systems are at risk due to software content & threat
environment

Software assurance is a significant part of Mission
Assurance

Significant risks come from

- Human coding mistakes and design flaws leading
to security flaws

— Supply Chain compromises
It is best to identify/avoid software flaws earlier

- But projects need the target list of weaknesses in
code and activities as well as assurance
methodologies for confirming that risks were
adequately addressed

© 2009 MITRE

Software Assurance’s Challenges

© 2009 MITRE

SwA'’s Relationship to Traditional
System/Software Engineering Disciplines

For a safety/security analysis
to be valid ...

System and SW
Engineering and
Information Systems
Security Engineering

The execution of the system
must be predictable.

This requires ...

Predictable Correct implementation

Execution

of requirements, Traditional
expectations and concern
Information regulations.

Assurance Cyber

Security Exclusion of unwanted Growing

function even in the face ~ ¢oncern
of attempted epr0|tat|onJ.

Predictable Execution = requisite enabling characteristic
*Adopted from Jim Moore, IEEE CS S2ESC Liaison to ISO SC7 ©2009 MITRE

“Software Assurance” Comes From:

I =

| 258 Knowing what it takes to “get” what we want
Ay = Development/acquisition practices/process capabilities
4 w» Criteria for assuring integrity & mitigating risks

Building and/or acquiring what we want
Threat modeling and analysis

A
» Requirements engineering

» Fallsafe design and defect-free code
A

Supply Chain Management

Understanding what we built / acquired

» Production assurance evidence
» Comprehensive testing and diagnostics
» Formal methods & static analysis

%20, » Policyl/practices for use & acquisition
*Multiple Sources: . . > Composition of trust

DHS/NCSD, OASD(NIIA, | —': » Hardware support

NSA, NASA, JHU/APL ©2009 MITRE

SWA and Systems Development (example)

Abuse Case

Application Security Code
Development

Review (developed and
purchased), Penetration

Gather All of the
Evidence for the

Cvber Assurance Case

Tl}l/r " Testing & Abuse Case and Get It Approved

cat. Driven Testing
Analysis
(Program
A B \Initiation) C FOC
Concept Technology | System Development Production & Operations &
Refinement | Development & Demonstration Deployment Support
and Systems Design Saalon —--

Concept
Q sty O Kt | renorse O Bon

Pre-Systems Acquisition Systems Acquisition Sustainment

Supply Chain Analysis &
Application Architecture
Security Review

Application Design
Security Review

Application Security Code
Review, Penetration Testing &
Abuse Case Driven Testing of
Maintenance Updates

* |deally Insert SwA before RFP release © 2009 MITRE

Integrating SwA into the
Systems Engineering Lifecycle

Design, Develop, Integrate

Develop/ Build Test &
Design Integrate
Solution

Security Architecture Source Code Review ,
Threat & Design . . Security
Modeling Phase 2 Components
Determine b s
Needs Security J’ _ Certifiable
Requirements Fieldable System

Phease 1 Drson 2
Security CONOP e RS
. S rit Application Server
ecurity Hardening/Confi
Planning & t“"' Bhase ~ 9 9

Verify &
: Understand ssessmen 4 Management Y
Requirements & Feedback Validate
Problem
Software Updates ;
Accredited -
& Patch - Field
Operational
Management e Incremental
Capability "
. Capability
Operation &

Maintenance

Assess
Operational
Security

- C&A* Lifecycle O&M

Systems Lifecycle

Security Lifecycle

6 6 ©) 2009 MITRE

Software Assurance Lifecycle
Considerations

Define Lifecycle Threats/Hazards, Vulnerabilities & Risks
ldentify Risks attributable to software

Determine Threats (and Hazards)

Understand key aspects of Vulnerabilities

Consider Implications in Lifecycle Phases:
- Threats to: System, Production process, Using system

- Vulnerabilities attributable to: Ineptness (undisciplined practices),
Malicious intent, Incorrect or incomplete artifacts, Inflexibility

— Risks in Current Efforts: Polices & Practices, Constraints

© 2009 MITRE

A

A

The Assurance Case/Argument —
Requires Measurement

Set of structured assurance claims, supported by evidence and

reasoning, that demonstrates how assurance needs have been satisfied.

- Shows compliance with assurance objectives

- Provides an argument for the safety and security of the product
or service.

- Built, collected, and maintained throughout the life cycle

- Derived from multiple sources

Sub-parts

- A high level summary

- Justification that product or service is acceptably safe, secure,
or dependable

- Rationale for claiming a specified level of safety and security

- Conformance with relevant standards and regulatory
requirements

- The configuration baseline

- ldentified hazards and threats and residual risk of each hazard
and threat

-~ Operational and support assumptions

*Adopted from Paul Croll, ISO SC7 WG9 Editor for Systems and Software Assurance © 2009 MITRE

6060

Software Facts

4| F

LALHeE

4+ | hitp:f www.swaconsortium,org/ projects/ softwareFacts/ softwareFacts.html &

Q~ Google

Software Facts

Wouldn it be great if software came with labels like food does? In 2004 Aspect Security proposed
having a selof software facts, similar to a nulrition facts label, malenal safety dala sheets. or [ASer
gafety classes, Like food, itwould not tell you everything about the software, but could give you somea
ideas about its content. It would be a step toward making the asymmelrical flow of information (see
George Akerlof, “The Market for Lemons™ 1970) more symmaedtrical and might lead 1o markets for
beter (pick your definition of “bether”) software.

The Software Assurance Consorium (SwAC) is the home for this software facts effort and takes on
this activity as a special SwAC praject.

Cautions

A fixed, small collecton of software facis could be harmiul. Here ane some cauions.,

= Alabel can give false confidence. It may suggest security when there is not enough. ("Fat
free? Great, Il have six'™)

= A cursory review of the label may be done instead of appropriate analysis of other, existing

material,

A label may become de rigueur and shut out better software.

A label could entrench curment an and thus slow progress, either reseanch or adoption,

Lack of an aftribute in the label may lead to the assumption that the afiibute is missing

Eaming the label might divert effort from real product improvements,

Developing a label might divert effort better used to directly research software assurance.

(Don't bother standardizing buggy whips)

A label may duplicate existing statutes, bargaining rights, or due diligence.

= Alabel can lead to liability and prosecution - not what we want.,

= Hcould be outdated by patches or 8 new wersion OR be too bothersome to gel for each new
micro-version,

The basic idea here s expounded from Aspect Security's ideas. | am grateful to them, paniculany Jaff
Williams, for sharing their ideas.

The following web pages have additional information:

« Similgr programs and related afforts

« Possible scope, including audiences, classes of products of services, goals, and terminology.
« Possible contant and criternia for conbent

« Paricipanis and eventually process issues

-

A proposed software package label
MNext Steps

To learn more about this effort or to get involved, please contact Danlel .G Wolf
(dwolfi@SwAConsortium.ong) at the Software Assurance Consortium or Paul E. Black
(paul blackf®nist gov) at the U.S. National Instite of Standards and Technology (MIST).

Maxt saps are 1o onganize a commitiee or group and stan narmowing down the process, scope, and
contant

e e e e . .. e i

Software Facts

Name InvadingAlienO3
Version 1996.7.04
Expected number of users 15

Modules 5 483 Modules from libraries 4 102

No Severe Vulnerabilities Found
by methods that will be
out of date by Feb 2009
% Weaknesses Found

Cross Site Scripting 22 T6%
Reflected 12 41%
Stored 10 34%

SQL Injection 2 7%

Buffer overflow 5 17%

|

Total Security Mechanisms 284 100%
Authentication 15 5%
Access control 3 1%
Input validation 230 B1%
Encryption 3 1%

AES 256 bits, Triple DES

Report security flaws to: ciwnmeyi@mothership.milkyway

Total Code 3.1415x10° function paints 100%
C 1.1%10 function points 35%
Ada 2.0415x10? function points 65%

Lewvel W static analysis run on 42% of code

Test Material 2.718x10° bytes 100%
Data 2.68x105 bytes 99%
Executables 27.18x10° bytes 1%

Documentation 12 058 pages 100%
Tutarial 3 971 pages 33%
Reference 6 233 pages 52%
Design & Specification 1 854 pages 15%

Libraries: Sun Java 1.5 runtime, Sun J2ZEE 1.2.2,
Jakarta logdj 1.5, Jakarta Commons 2.1,
Jakarta Struts 2.0, Harold XOM 1.1rcd, Hunter JDOMw1

Compiled with gcc (GCC) 3.3.1

Stripped of all symbals and relocation information.

ISO/IEC 15026: Systems & Software Assurance
15026 Part 2: The Assurance Case (Claims-Evidence-Argument)

Claim ‘ S ‘

Sub-claim 1 ‘ Sub-claim 2 ‘

/\

Sub-claim 3 ‘ Sub-claim 4

v 1 1

Evidence . R TN T

| Ewvidence | | Ewvidence | | Ewvidence |
" \ A 4

~__ e ‘\\ ///’ S /"

Argument

Argument
A
/
—

. Related Consequences. |

Condiionalty | & Uncertainty Limitations |

Argument
Combines Subordinates “Yieldimg
Conclusion & Lincertaimty

[Justification of Kind & Validity
of Reasoning im Aorgunm et E

. . — . I
Sub-Claim] [Evidence] [Assumption]

I & Probability True

Argument] | Meaning, valdity. ntegrty. I ‘Rationale for Assumption,
.__relevance, & meaningfulness - :Probability&its Uncertainty:

I—l Evidence, etc.]

ISO/IEC 15026: A Four-Part Standard

. Planned parts:

15026-1: Concepts and vocabulary (initially a TR2
and then revised to be an IS)

15026-2: Assurance case (including planning for the
assurance case itself)

15026-3: System integrity levels (arevision of the
1998 standard)

15026-4:. Assurance in the life cycle (including
project planning for assurance
considerations)

» Possible additional parts as demand requires
and resources permit, e.g.
Assurance analyses and techniques
Guidance documents

© 2009 MITRE

ISO/IEC 15026: Examples of relationships among parts

Claims

Evidence

© 2009 MITRE

Safety Cases Based on Assurance Cases —

Claims-Evidence-Argument in Use for <10 Years

Legend:
Green = Low Risk

|Yel|0w = Medium Risk |

I—b =*“Is solved by |
—> = “In context of”

Clm1

Top-Level Claim

»

Ctx1
Context

VNN

Sub-Claim

Sub-Claim

Sub-Claim

Evi

Evidence

>

Al

Assumption

© 2009 MITRE

A

The Assurance Case/Argument:
OMG Evidence and Claims/Arguments Standards

ARM:Claims

‘Argum entationE lem ent ‘
I 1
[]

SAEM: Evidence

C ontext

1 Assumption | i HIG T 2 ST wdescription : String
\ |
ARM:Arguments |
+evidenceltem }
ModelElement biggest contention is EvidenceReference | ~_| Evidenceltem

around the term
‘Argument’

identifier : String
gdescription : String|

premise should have +premise Z% y .
a constraint L e desciibedBy NarativeElement duplication between
B > EvidenceReference and

wn
)
-
decoknposedlnto I 0.1 Evidenceltem v E “g
| +sup§6/‘1 " +namativeElement . w w 5 O
‘ NarrativeElement T o = -
¢ (descriptior) should a > g_. =
supports +context be owned by = o
. StructuredArgument et ArgumentationElemen n o = o
Supp! y
participan
(. t rticipants
+conclu4s|on T
1 .
C'\V. i inContextf NarrativeArgument
am 7 — trust level —
risk -
oty = I
= = there is an issue of the reliability ‘g’ k =i
(M= 53 €1 EriLLS ownership of the Argument (flat
conclusions; but there is a 'tooling space in?he AssﬁrrganceCas(e) " regulatory g SOft\Na re
penalty’ fr supporting mulfiple = funiclional = assurance
choicein the GUI o %
C 5 security 3 model
E platform © A
: S 29 code
- dEE T ?g design
.- ==l = B8 architecture

OFJICT MAMAGEMINT GROUF

DHS’s Build Security In and SwA Websites

LEEV R

= .
4 = |

Feiskay, Fabnssry 08, 3008

WS- CERT; Salowuse Adsurists

& I :T! ':E;m;- § ot - S e] v

Ml Thes Adviscay:

The thenal el i tha sdrkng
dectne b High & Orasgs

Software Assurance

DS Cyber Securty

Saftwane i essential b the cperaton of Cha Nation's ot
irtEiecTyual progerty, CONSUMmES TRust, and Busingss operal]
applcations and infrastructune, from process controdl sysbe
relabis soflware.

I i eszirma0ed that S0 percent of reported Securty noidey
software, Therefore, ensuring tha integrity of softmare o
viirbratableed, Srd et g gnbrall fik Lo Sylr BELACK

it £ ikt s oo bt - sscunty of the ens

Saotting a Higher Standard for Software Assur

Grounded in the Mational Strategy 1o Secur Cybwergacs,
D BT LIS The SEElP TRt O SORCLLA! Gukan
in cyber secuity, Significant raw resasech on LT oty
BEvHOEMEnT SUEL O HEw Fathocs LR St Bar
wheen portions of the System sOfWae &°F Compromised

Tremgh fhese eflorts, lomelerd eounty seeks to reduc
iy L Y et 1P Ll Seveloprnert and

Enahie more secure and relable softvans that sUppoTts m
Pl ructon,

From Patch Managemant b Software Assurar

The kiry objective Of the Software ASSUrance Program is i
softwars sidurance. This shif) it Sesgned 15 enccurege)
Treem the stast, rather than nelyieg on sppiying palces 1o

Recogninng that poftware security i fundamentaly a sof]
way thioughsut 1he softwans dovelcpmens ile cychs, Hom|
il Sertor and priedte adustey, 10 rane e SLiededd o)
o praderTo) wil rese xpettataony o procy ol sverendy
ey PREST it B Lotis a8 & rorrnal gart of By

Building Success through Collaboration

WwWw.us-cert.gov/swa/

o,

oo

Hema | FAQ | Coetst |

Priemrp B Liee

75

Sofvware Assurance

What [4 Scftwars Asturante?

Evertn

FEsources

Waorking Grougs

Waorkforce Education & Training

Precedsed b Proctces

Technelegy, Teak & Product Eval,

Acguisition & Outzeurcing
Mearrement

Butimess Case

Malware

Jain & Werking Group

US-CERT Sofimars Asdurancs

Build Security In

Regources o help you
buaild soourity into your
SYSURITS i SVEry phase
of development.

| d = &[]+ [5 haeps: Phuldsetu rityinus -oen.gov Swa) ' =

TECHNOLDGY ACQUISTTION ERpeiEd e EP.UL'I":;

“l'h..l is Sﬂ‘ﬂh'm ﬂ‘.l WOSOAOE EDUCATION b TRAINING
FROCIESET & MACTICLE.

Esiftware aisurance (SwA) free from

vulrarabalities, sither inter TICHSOLOCY, TOOLS & MIODUIT EVAL dheriEally irnderbed ot

ary time during its e e v coron b guiouacne Intended manner

{from CNSS 4009 1A Gloss Srigions),
MEASLALMINT

Az part of the DME risk mi s i gram seeks to meduce

software vulnerabiliies, m
developrment of trustworth MALWARE

diagrostic capabiliies to ar 2N A WORING GADUP

mprosne the roatine
ubion, and Eo Empntve

FOLUS AREAS

The Swik framework encourages the production, evaluation, and squisition of better
quakty and mone Seture Softwane, providing Mocuiss in these four areas:

¢ People: Education and training for developdrs and usars

s Process: Sound pracies, standards, and practical guicsines for the cevelopmaent of
sCufe plware

» Technology: Cagrostic tocks, cytser security RAD and measurement

s Acguisition : Speaficotions and guidelines: for soguisition and oulsourdng

The Software Assurance Forum and several working groups composed of volunteers from
government, industry, and academia ane helping the Software Assurance Program achieve
i3 otrjectives in these focus anéas.

e T

WHY I8 ﬂlﬂt ASEURAMCE CRTTICALT

A Homeland
"7 Security

AN R

buildsecurityin.us-cert.gov/swa/

© 2009 MITRE

Making
Security
Measurable™

[makingsecuritymeasurable.mitre.org]

Making Security Measurable

Security

Measurab

http: f frmakingsecuritymeasurable. mitre org/

sivar of Dalfoe

@ Bl caogle]

MITRE, in collaboratan with
governmant, industey, and
academic stakaholders, s
Improving the measurabiity of
security through enumerating
basaline sacurity data,
providing standard ized
languages as maans for
accurataly communicating tha
information, and encouraging
the sharmg of tha information
with usars by developing
repositories.

The other activities and
Initiatives listed hare have
similar concapts or compatible
approachas to MITRE's.
Togather all of these efforts are
helping to make security more
measurable by dafining the
concepts that need to be
measuned, providing for high
fidedity communications about
the measurements, and
providing for sharing of tha
measurameants and the
definitions of what 1o measurs,

Measurable security pertains at & minimum te the following areas:

Common Vulnerabilities and Exposures
ICVEE] - common vulnerability identifiers

2 W
et O
—\"\5 Common Weakness Enumeration {CWE™) -

\ " list of software weakness types

Common Attack Pattern Enumeration and
CAEC Classification (CAPEC™) - list of common
attack patterns

Common Mahvare Enumeration (CME™) -

@M E common identifiers for viruses, worms, and

other malicious code
M=, == Commeon Configuration Enumeration (CCE™)
‘(_ 1 C_ - common security configuration identifiers

‘o Common Platform Enumeration (CPE™) -
- .- CPE common platform identifiers

SANS Top Twenty - SANS/FBI consensus list of the Twenty
Most Critical Internet Security Wulnerabilities that uses CVE-IDs
to identify the issues

OWASP Top Ten - ten moest critical Web application security
flawrs

WaASC Web Security Threat Classification - list of Web security
threats

= Assel Securty Assessmont
= Azzal Managerment

Languages
and Assessment Langua:

n Wulnerabili
[OVAL@,’[standard for determi

g
wulnerability and configuration issues

(-—"' "‘—-.) mmon Result Format (CREF™] -
RF standardized assessment result format for

conveying findings based on common names
and naming schemes

=CEE

owval Interpreter - free tool for collecting information for testing,
carrying out OVAL Definitions, and presenting results of the
tests

Common Event Expression (CEE™]) -
standardizes the way computer events are
described, logged, and exchanged

Benchmark Editor™ - free tool that enhances and simplifies
creation and editing of benchmark documents written in XCCDF
and OWAL

Extensible Configuration Checklist Description Format (XCCDF)
- specification language for uniform expression of security
checklists, benchmarks, and other configuration guidance

Common Vulnerability Scorin stem [CWSS) - open standard
that conveys vulnerability severity and helps determine urgency
and pricrity of response

Common Announcement Interchange Format (CAIF) - XML-
based format created to store and exchange security
announcements in a normalized way

OMG Semantics of Business Vocabulary and Business Rules
[SBWR] - language for interchange of business wocabularies and
rules among organizations and software tools

Repositories

oval Re - community-developed
OWAL Vulnerability, Compliance, Inventory, and
meposrrary Patch Definitions

National Wulnerabiliy Database (NWD) - U.S. vulnerability
database based on CWVE that integrates all publicly available
wulnerability rescurces and references

MIST Security Content Automation Protocol (SCAP) - security
content for automating technical control compliance activities,
wulnerability checking, and security measurement

Red Hat Repository - OWAL Patch Definitions corresponding to
Red Hat Errata security advisories

Center for Internet Security (C1S) Benchmarks - best-practice
security configurations accepted for compliance with FISMA, the
130 standard, GLB, 30x, HIPA&A, and FIRPA, and other
regulatory reguirements for information security

DISA Security Technical Implementation Guides (STIGS] - U.S.
Defense Information Systems Agency's (DISA) STIGS are
configuration standards for DOD information assurance and
information assurance-enabled devices and systems

View the current collection of organizations, activities, and initiatives.

This Web sio is hosiod by
(=S

Disclaimar

The MITRE Corpoetion,
All other bracermarks. s e propty of thilr respoctive ownors. Cortsct us:

Page Last Updated: January 17, 2008

D 2008 Thes MITRE Corporation. CVE s a regeioned tradomark and the Maiing Socurty Measuabis logo. CCE, CME. OWE. CPE. and OVAL e ademarks of The MITRE
i T L AT i LR]

Questions?

	Software Assurance (SwA) Automation…
	Slide Number 2
	Catastrophic Failures Can Be Due To Software Weaknesses
	Software Flaws �Can Have Major Mission Impacts�- Ariane 5 Flight 501 -
	Slide Number 5
		Exploitable Software Weaknesses (a.k.a. Vulnerabilities)�
	What is wrong with this picture?
	Software Vulnerabilities
	Publicly Known Vulnerabilities in “Packaged Software” (CVE) Growth
	Vulnerability Type Trends:�A Look at the CVE List (2001 - 2007)
	Removing and Preventing the Vulnerabilities Requires More Specific Definitions…CWEs
	Current Community Contributing to the Common Weakness Enumeration
	Slide Number 13
	Slide Number 14
	Slide Number 15
	People are Starved for Simplicity
	Printable PDFs of Entire CWE Now Available
	Slide Number 18
	CWE Outreach: A Team Sport�May/June Issue of IEEE Security & Privacy…
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Today Everything’s Connected
	Cyberspace & physical space are increasingly intertwined and software controlled/enabled
	Slide Number 26
	Our Systems are Composed of Elements from Many Languages and Environments
	Systems Are Complicated…
	And Software Is Complex Too...
	Some Static Analysis Tools Focus on Pulling Structure Out of the Complexity …
	Static Analysis is about collecting information and capturing knowledge
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Gartner Magic Quadrant�for�Static Application Security Testing�Tools
	CWE Compatibility & Effectiveness Program
	Fortify Main User Interface
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Example Buffer Overflow
	Example Buffer Overflow: Off-by-One
	Example Buffer Overflow: Signed
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Complete CAPEC Entry Information
	CAPEC Current Content (12 Major Categories)
	CAPEC Current Content (Which Expand to…)
	CAPEC Current Content (305 Attacks…)
	Cyber Threats Emerged Over Time
	Cyber Threats
	What is Software Assurance (SwA)?
	“Software Assurance” �(from http://en.wikipedia.org/wiki/Software_Assurance)
	DHS - Challenges in Software Assurance
	DoD Perspective on the�Software Assurance (SwA) Problem
	DoD OASD - Software Assurance is Critical*
	Summary of the SwA Problem
	Software Assurance’s Challenges
	SwA’s Relationship to Traditional �System/Software Engineering Disciplines
	“Software Assurance” Comes From:
	SwA and Systems Development (example)
	Integrating SwA into the�Systems Engineering Lifecycle
	Software Assurance Lifecycle Considerations
	The Assurance Case/Argument – � Requires Measurement
	Slide Number 69
	ISO/IEC 15026: Systems & Software Assurance �15026 Part 2: The Assurance Case (Claims-Evidence-Argument)
	ISO/IEC 15026: A Four-Part Standard
	ISO/IEC 15026: Examples of relationships among parts
	Safety Cases Based on Assurance Cases –Claims-Evidence-Argument in Use for <10 Years
	The Assurance Case/Argument:�OMG Evidence and Claims/Arguments Standards
	DHS’s Build Security In and SwA Websites
	[makingsecuritymeasurable.mitre.org]
	Questions?

