New BIOS Protections for Government Enterprise Clients

BOB CLEMONS, NSA/IAD
ANDREW REGENSCHEID, NIST
• From this talk you should learn:
 – What it means for systems to be compliant with the NIST Special Publications
 – What you gain from running systems compliant with the NIST Special Publications
 – Why you should care
Outline

• Background
• Prevention of Unauthorized BIOS Modification (NIST SP 800-147)
• Detection of Unauthorized BIOS Modification (NIST SP 800-155)
• Recommendations
DEPARTMENT OF DEFENSE
ASSOCIATE DEPUTY SECRETARY
MEMORANDUM

MEMORANDUM FOR SECURITIES OF THE MILITARY DEPARTMENTS

CHIEF OF THE JUNIOR CHIEFS OF STAFF

UNDER SECRETARY OF DEFENSE

DEPUTY CHIEF MANAGEMENT OFFICER

ASSISTANT SECRETARY OF DEFENSE

GENERAL COUNSEL OF THE DEPARTMENT OF DEFENSE

DIRECTOR, OPERATIONAL TEST AND EVALUATION DIRECTORATE

COST ASSESSMENT AND PROGRAM EVALUATION INSTRUMENTATION DIRECTOR, DEPARTMENT OF DEFENSE ASST TO THE SECRETARY OF DEFENSE

DIRECTOR, INFORMATION MANAGEMENT DIRECTOR, NET ASSESSMENT

DIRECTOR OF THE DOD FIELD ACTIVITIES

SUBJECT: Implementation of Basic Input/Output System (BIOS) Protection Guidance

In April 2011, the National Institute of Standards and Technology (NIST) Special Publication (SP) 800-147, “BIOS Protection Guidance,” was issued to address security requirements for ensuring the unaltered modification of BIOS firmware on personal computer (PC) and laptop systems, including desktops and servers. As computer manufacturers are beginning to implement BIOS protections, as part of their standard product lines, to ensure the security of their information systems, including those designated as national security systems, specifications for PC client systems in the United States should be followed as noted by the National Institute of Standards and Technology, and the implementation of BIOS protection for the U.S. government is consistent with the guidance outlined in the NIST publication. This memorandum outlines the requirements for implementing BIOS protection on PCs and laptops.

This memorandum will include compliance with the NIST SP 800-147, “BIOS Protection Guidance.”

The point of contact for this matter is Richard Hite, Richard.Hite@mil.mil, or 703-697-8730.

Terri M. Talia

BIOS PROTECTION MEMORANDA

DOD CIO Memo NII001001
8 Sept 2011

DHS FISM 12-01
7 Mar 2012

MEMORANDUM FOR EXECUTIVE DEPARTMENTS AND AGENCIES

FROM:

Roberta S. Silversly
Acting Assistant Secretary for Cybersecurity and Communications
Division

SUBJECT: Preconfigured BIOS for New Procurements of Desktop and Laptop Computers

Summary:

This memorandum outlines the use of BIOS protection for new procurements of personal computers (PC) and laptops, as required by Department of Homeland Security (DHS) and the federal government.

Background:

The Federal Information Security Management Act (FISMA) provides guidance for the procurement of computing resources. Federal agencies are required to implement FISMA policies and procedures for the security of information systems. This memorandum outlines the requirements for implementing BIOS protection on new procurements of desktop and laptop computers.

Recommendation:

Departments and agencies should begin implementing BIOS protection on new procurements of desktop and laptop computers.

1 The Department of Homeland Security issued the Federal Information Security Management Act (FISMA) to require federal departments and agencies to implement policies and procedures for the protection of information systems. This memorandum outlines the requirements for implementing BIOS protection on new procurements of desktop and laptop computers.
DOD CIO MEMORANDUM

- Applies to DoD Information Systems
- Requires specifications for “PC client systems” in solicitations issued after 1 Jan 2012 to require compliance with NIST Special Publication 800-147 section 3.1
- Compliance with 800-147 sections 3.1 and 3.2 to be included in revised DoD Instruction 8500.2 “Information Assurance (IA) Implementation”
DHS MEMORANDUM

- Applies to Federal Departments and Agencies
- Recommends that new procurements of PC client systems after 1 Oct 2012 be compliant with 800-147 section 3.1 “to the extent possible”
- Permits update through normal refresh cycle
- Recommends implementing 800-147 section 3.2 “to the extent possible”
WHAT IS BIOS?

- Basic Input/Output System
- Firmware that initializes and boots the system
- Stored on motherboard and add-in cards
SYSTEM BIOS

- Stored on flash device on the motherboard
- First code to execute on the main processor after power on
- Two major types of PC BIOS
 - Conventional/Legacy BIOS
 - Unified Extensible Firmware Interface (UEFI)
OTHER FIRMWARE

• Option ROMs
 – BIOS code on add-on cards (e.g., video card, HDD controller)
 – Developed and updated by add-on card manufacturer
 – Executes during boot on main CPU

• Microcontroller Firmware
 – Executes on add-on card microcontroller (e.g., HDD, DVD drive, HW management engine)
 – Developed and updated by add-on card manufacturer
PC BOOT PROCESS

- Execute Core Root of Trust
- Initialize and Test Low-Level Hardware
- Load and Execute Additional Firmware Modules
- Select Boot Device
- Load Operating System
UEFI BOOT PROCESS

1. Initialize firmware
2. Initialize low-level hardware
3. Load and execute EFI drivers
4. GPT/MBR
5. Boot Loader
6. Early OS Kernel Init.
7. Full OS Kernel Init.
8. User Mode Processes
• System BIOS is updatable
 – To patch vulnerabilities
 – To add features

• Update mechanisms
 – User-initiated updates
 – Managed updates
 – Rollback
 – Manual recovery
 – Automatic recovery
THREATS

• Destructive Modification
 – Erase or corrupt the BIOS so the system will not boot
 – Might require physical replacement of BIOS chip
 – e.g., CIH (Chernobyl)

• Persistence Modification
 – A BIOS modification that ensures the continued existence of malware elsewhere
 – e.g., Mebromi
 • Infects BIOS, MBR, OS
MOTIVATION

- Operating system defenses have improved
- Malware has moved from the operating system to applications
- Firmware is another (more privileged) place for malware to go
WHY NOW?

• Computer industry is transitioning to UEFI-based BIOS implementations

• UEFI is very different from conventional BIOS:
 – More security features defined
 – Much larger attack surface
 – Standard interfaces could make exploits easier to write

• NIST had an opportunity to influence products before attacks become widespread
NIST GUIDELINES

• Two-pronged approach

 - **Protect** System BIOS from unauthorized modification by implementing a secure update mechanism (SP 800-147)

 - **Detect** unauthorized modification of System BIOS and configuration using secure measurement and reporting mechanisms (SP 800-155)
NIST SP 800-147
BIOS PROTECTION GUIDELINES

• Scope
 – System BIOS
 • Not option ROMs or microcontroller firmware
 – x86-based desktops and laptops
 • Not servers, tablets, phones
 – Remote threats
 • Malware exploits update mechanism
 • Compromised enterprise management infrastructure
 • Rollback to a vulnerable BIOS
ORGANIZATION OF 800-147

• Section 3.1
 – Guidelines on BIOS Implementations
 – Intended for computer manufacturers

• Section 3.2
 – Recommended Practices for Managing the BIOS
 – Intended for system administrators/owners
SECTION 3.1

- **Security Guidelines for System BIOS Implementations**
 - Signed BIOS updates
 - Flash write protections
 - Non-bypassability
 - Does not protect against physical access!
 - Secure Local Update Mechanism (SLUM)
 - Rollback prevention recommended
 - Prevent update to an authentic, but bad BIOS
 - Says nothing about the goodness of the BIOS!
AUTHENTICATION

1. OEM creates update image
2. OEM signs update image with private key
3. OEM releases update package
4. Package executed on target machine
5. RTU on target machine verifies signature
6. Target machine performs update
ROOT OF TRUST FOR UPDATE (RTU)

- Must contain
 - Signature verification algorithm, and
 - Public key to verify update image
- Which must be
 - stored in a protected fashion, and
 - modifiable only through an authenticated update mechanism or secure local update
• Use of NIST-approved crypto algorithms
 – Process: NIST SP 800-89
 – Algorithms: NIST FIPS 186-3
 – Strength: NIST SP 800-131A (>112 bits)
• Recovery mechanisms must also comply (or use SLUM)
• Can allow organizational control of update (authorization)
INTEGRITY (WRITE) PROTECTION

• Protect system BIOS in flash from modification outside of authenticated update process
 – Protect RTU
 – Protect locking mechanism itself

• Invoke protections prior to executing code that is not covered by the authenticated update mechanism

• Recommends hardware protections
 – Chipset-based locks
 – Flash-part-based locks
NON-BYPASSABILITY

- All BIOS updates must go through the authenticated update mechanism
- System design should not permit bypass of BIOS protections, e.g.,
 - No Direct Memory Access to system flash by other hardware components
 - No vulnerabilities in BIOS code
 - No insecure flash locking mechanisms
COMPLIANCE

• Currently self-certifying

• Windows Hardware Certification Requirements
 - “Further, it is recommended that manufacturers writing BIOS code adhere to the NIST guidelines set out in NIST SP 800-147”
 - section System.Fundamentals.Firmware.UEFISecureBoot.8
SECTION 3.2

- Recommended Practices for BIOS Management
 - Keep track of deployed versions
 - Use the authenticated update mechanism to update BIOS
 - Monitor the BIOS for deviations and remedy if necessary
BONUS RECOMMENDATIONS

• If your systems do not already have 800-147-compliant BIOSes, then you should update if compliant BIOSes are available for your systems.

• BIOS Update Guidance
Detecting unauthorized changes to BIOS using secure integrity measurement and reporting

Because protection might not be sufficient
 - Vulnerabilities in authenticated update mechanism could allow malicious update
 - Sensitive configuration data might not be protected

Guidelines for OEMs, OS vendors, security software vendors, and IT infrastructure manufacturers
BIOS MEASUREMENT

- Goal: Detect unauthorized changes so administrators can remedy
- Means:
 - Roots of Trust to measure, store, and report to Measurement Assessment Authority (MAA)
 - MAA verifies measurements
 - MAA can instruct IT components (e.g., managed switch) to respond accordingly
CORE COMPONENTS

• Roots of Trust
 – Measurement: Hashes code and data
 – Storage: Secure storage of hashes
 – Reporting: Provides integrity and non-repudiation for measurement reports

• Software agents
 – Untrusted software that interacts with the roots of trust
MEASUREMENT FLOW

• Device Provisioning
 - Obtain initial measurements from vendor or generate during provisioning

• Measurement
 - BIOS code and configuration data measured by RTM (or chain rooted in RTM) during boot
 - Measurements protected by RTS
MEASUREMENT FLOW

• Reporting
 – MAA receives measurements from endpoint periodically or on request
 – CA and RA use RTR to generate signed report
 – TA sends report to MAA

• MAA Verification
 – Verify signature and measurements
 – Measurements stored for administrators or used for access control decisions
Attributes and Measurements

- **Attributes**
 - Defined properties of a system that are used to assess confidence in the system and its measurements
 (e.g., types of roots of trust, support for 800-147)

- **Measurements**
 - Cryptographic hashes of code and/or data

- **Measurement Logs**
 - Measurements and components measured

- **Integrity Measurement Registers**
 - Protected locations where hashes of measurements are stored
USES CASES

- Basic Measurements Reporting
 - Notify administrators of changes
- Comply-to-Connect
 - Network access control
 - TNC framework
- Continuous Monitoring
RECOMMENDATIONS

• New computer purchases should include an 800-147-compliant BIOS
 – Immediate security benefit
 – Becoming standard

• Update to 800-147-compliant BIOSes if available
 – If not available, consider the criticality of the unprotected systems

• New computer and IT infrastructure purchases should support BIOS measurement

• Make BIOS management part of platform lifecycle
PLATFORM LIFECYCLE

- Provisioning
- Platform Deployment
- Operations and Maintenance
- Recovery
- Disposition
PROVISIONING AND DEPLOYMENT

- Maintain “golden” BIOS image for each platform
- Create and maintain configuration baseline
- Maintain a copy of the RTU, if applicable
- Register endpoint identity and BIOS integrity information in system inventory
PROVISIONING AND DEPLOYMENT

- Load “golden” BIOS image
- Ensure BIOS is configured according to baseline
- Set BIOS password
- Assert security controls requiring physical presence
OPERATION AND MAINTENANCE

• Perform updates using a change management process
 – Use 800-147 authenticated update mechanism
 – BIOS updates require new measurements to be registered
 – Ensure proper configuration is maintained

• Monitor deployed BIOSes
RECOVERY

• Use only when authenticated updates are not possible
• Can be used to rollback from a buggy BIOS update
DISPOSITION

• Reset BIOS configuration to defaults
• Remove passwords and organization-specific cryptographic keys
• Remove organization-specific customizations
SUMMARY

• NIST SP 800-147
 - Protects desktop & laptop clients from unauthorized BIOS modification by defining a secure, non-bypassable authenticated update mechanism

• NIST SP 800-155
 - Outlines a framework for a secure BIOS integrity measurement and reporting chain for client systems
RECENT / FUTURE DEVELOPMENTS

- Additional Protection Guidelines
- Additional Integrity Measurement Guidelines
MORE INFORMATION

NIST BIOS Security publications available at:
csrc.nist.gov

Contact Information
Andrew Regenscheid
andrew.regenscheid@nist.gov